Lecture 8: Attention and Transformers

Administrative

- Assignment 2 due 05/06
- Discussion section tomorrow
- Covering PyTorch, the main deep learning framework used by AI researchers + what we recommend for your projects!

Last Time: Recurrent Neural Networks

Last Time: Variable length computation graph with shared weights

Last Time: Variable length computation graph with shared weights

W is reused (recurrently)!

Last Time: Variable length computation graph with shared weights

Sequence to Sequence with RNNs: Encoder - Decoder

Input: Sequence $x_{1}, \ldots x_{T}$
Output: Sequence y_{1}, \ldots, y_{T},

A motivating example for today's discussion machine translation! English \rightarrow Italian

Sequence to Sequence with RNNs

Input: Sequence $x_{1}, \ldots x_{T}$
Output: Sequence y_{1}, \ldots, y_{T},
From final hidden state predict:
Encoder: $h_{t}=f_{w}\left(x_{t}, h_{t-1}\right) \begin{aligned} & \text { Initial decoder state } s_{0} \\ & \text { Context vector } c(o f t e n \\ & \left.c=h_{T}\right)\end{aligned}$

Sequence to Sequence with RNNs

Input: Sequence $x_{1}, \ldots x_{T}$
Decoder: $s_{t}=g_{u}\left(y_{t-1}, s_{t-1}, c\right)$
Output: Sequence y_{1}, \ldots, y_{T},
vediamo
From final hidden state predict:
Encoder: $h_{t}=f_{w}\left(x_{t}, h_{t-1}\right) \begin{aligned} & \text { Initial decoder state } s_{0} \\ & \text { Context vector } c\left(\text { often } c=h_{T}\right)\end{aligned}$
\square

Sequence to Sequence with RNNs

Input: Sequence $x_{1}, \ldots x_{T}$
Output: Sequence y_{1}, \ldots, y_{T},

Decoder: $s_{t}=g_{u}\left(y_{t-1}, s_{t-1}, c\right)$
vediamo il

Encoder: $h_{t}=f_{w}\left(x_{t}, h_{t-1}\right) \begin{aligned} & \text { From final hidden state predict: } \\ & \left.\begin{array}{l}\text { Initial decoder state } s_{0} \\ \text { Context vector } c(o f t e n ~ \\ c=h_{T}\end{array}\right)\end{aligned}$

Sequence to Sequence with RNNs

Input: Sequence $x_{1}, \ldots x_{T}$
Output: Sequence y_{1}, \ldots, y_{T},

Decoder: $s_{t}=g_{u}\left(y_{t-1}, s_{t-1}, c\right)$ vediamo il cielo [STOP]

Remember:

During Training:
Often, we use the "correct" token even if the model is wrong. Called teacher forcing

During Test-time:
We sample from the model's outputs until we sample [STOP]

Sequence to Sequence with RNNs

Input: Sequence $x_{1}, \ldots x_{T}$
Output: Sequence y_{1}, \ldots, y_{T},
Decoder: $s_{t}=g_{u}\left(y_{t-1}, s_{t-1}, c\right)$
vediamo il cielo [STOP]
From final hidden state predict:
Encoder: $\left.h_{t}=f_{w}\left(x_{t}, h_{t-1}\right) \quad \begin{array}{l}\text { Initial decoder state } s_{0} \\ \text { Context vector } c(o f t e n ~ \\ c=h_{T}\end{array}\right)$

Sequence to Sequence with RNNs

Input: Sequence $x_{1}, \ldots x_{T}$
Output: Sequence y_{1}, \ldots, y_{T},
Decoder: $s_{t}=g_{u}\left(y_{t-1}, s_{t-1}, c\right)$
vediamo il cielo [STOP]

Sequence to Sequence with RNNs

Input: Sequence $x_{1}, \ldots x_{T}$
Output: Sequence y_{1}, \ldots, y_{T},

Decoder: $s_{t}=g_{u}\left(y_{t-1}, s_{t-1}, c\right)$ vediamo il cielo [STOP]

Sequence to Sequence with RNNs and Attention

Input: Sequence $x_{1}, \ldots x_{T}$
Output: Sequence y_{1}, \ldots, y_{T},

Encoder: $h_{t}=f_{w}\left(x_{t}, h_{t-1}\right) \quad \begin{aligned} & \text { From final hidden state: } \\ & \text { Initial decoder state } s_{0}\end{aligned}$

Sequence to Sequence with RNNs and Attention

Compute (scalar) alignment scores

$$
e_{t, i}=f_{a t t}\left(s_{t-1}, h_{i}\right) \quad\left(f_{a t t} \text { is a Linear Layer }\right)
$$

Sequence to Sequence with RNNs and Attention

Compute (scalar) alignment scores

$$
e_{t, i}=f_{a t t}\left(s_{t-1}, h_{i}\right) \quad\left(f_{a t t} \text { is a Linear Layer }\right)
$$

Normalize alignment scores
to get attention weights
$0<\mathrm{a}_{\mathrm{t}, \mathrm{i}}<1 \quad \sum_{\mathrm{i}} \mathrm{a}_{\mathrm{t}, \mathrm{i}}=1$

Sequence to Sequence with RNNs and Attention

Sequence to Sequence with RNNs and Attention

Sequence to Sequence with RNNs and Attention

Sequence to Sequence with RNNs and Attention

Repeat: Use s_{1} to compute
new context vector C_{2}
Compute (scalar) alignment scores

$$
\mathrm{e}_{\mathrm{t}, \mathrm{i}}=\mathrm{f}_{\mathrm{att}}\left(\mathrm{~s}_{\mathrm{t}-1}, \mathrm{~h}_{\mathrm{i}}\right)
$$

$$
\text { (} \mathrm{f}_{\text {att }} \text { is a Linear Layer) }
$$

Sequence to Sequence with RNNs and Attention

Repeat: Use s_{1} to compute

Sequence to Sequence with RNNs and Attention

Repeat: Use s_{1} to compute new context vector C_{2}

Use context vector in decoder: $\mathrm{s}_{\mathrm{t}}=$ $g_{u}\left(y_{t-1}, s_{t-1}, c_{t}\right)$

Sequence to Sequence with RNNs and Attention

Use a different context vector in each timestep of decoder

- Input sequence not bottlenecked through single vector
- At each timestep of decoder, context vector "looks at" different parts of the input sequence

vediamo

Sequence to Sequence with RNNs and Attention

Example: English to French translation

Visualize attention weights $\mathrm{a}_{\mathrm{t}, \mathrm{i}}$

Sequence to Sequence with RNNs and Attention

Example: English to French translation

Input: "The agreement on the European Economic Area was signed in August 1992."

Output: "L'accord sur la zone économique européenne a été signé en août 1992."

Visualize attention weights $a_{t, i}$

Sequence to Sequence with RNNs and Attention

Example: English to French translation

Input: "The agreement on
Diagonal attention means the European Economic Area was signed in August 1992."

Output: "L'accord sur la zone économique européenne a été signé en août 1992." words correspond in order

Diagonal attention means words correspond in order

Sequence to Sequence with RNNs and Attention

Example: English to French translation

Input: "The agreement on the European Economic Area was signed in August 1992."

Output: "L'accord sur la zone économique européenne a été signé en août 1992."

Diagonal attention means words correspond in order

Attention figures out different word orders

Sequence to Sequence with RNNs and Attention

Context vectors don't use the fact that h_{i} form an ordered sequence - it just treats them as an unordered set $\left\{h_{i}\right\}$

General architecture + strategy given any set of input hidden vectors $\left\{h_{i}\right\}$! (calculate attention weights + sum)

we

see
vediamo

il cielo cielo [STOP]

Image Captioning using spatial features

Input: Image I
Output: Sequence $y=y_{1}, y_{2}, \ldots, y_{T}$

An example network for image captioning without attention

Image Captioning using spatial features

Input: Image I

Output: Sequence $y=y_{1}, y_{2}, \ldots, y_{T}$

Encoder: $h_{0}=f_{w}(\mathbf{z})$
where \mathbf{z} is spatial CNN features
$f_{w}(\cdot)$ is an MLP

Image Captioning using spatial features

Input: Image I
Output: Sequence $y=y_{1}, y_{2}, \ldots, y_{T}$

Encoder: $h_{0}=f_{w}(\mathbf{z})$
where \mathbf{z} is spatial CNN features $f_{w}($.$) is an MLP$

Decoder: $h_{t}=g_{v}\left(y_{t-1}, h_{t-1}, c\right)$ where context vector c is often $c=h_{0}$ and output $y_{t}=T\left(h_{t}\right)$
 pretrained CNN

Image Captioning using spatial features

Input: Image I
Output: Sequence $y=y_{1}, y_{2}, \ldots, y_{T}$

Encoder: $h_{0}=f_{w}(\mathbf{z})$
where \mathbf{z} is spatial CNN features $f_{w}($.$) is an MLP$ features from a pretrained CNN

Decoder: $h_{t}=g_{v}\left(y_{t-1}, h_{t-1}, c\right)$ where context vector c is often $c=h_{0}$ and output $y_{t}=T\left(h_{t}\right)$

Image Captioning using spatial features

Input: Image I
Output: Sequence $y=y_{1}, y_{2}, \ldots, y_{T}$

Decoder: $h_{t}=g_{v}\left(y_{t-1}, h_{t-1}, c\right)$ where context vector c is often $c=h_{0}$ and output $y_{t}=T\left(h_{t}\right)$

Encoder: $h_{0}=f_{w}(\mathbf{z})$ where \mathbf{z} is spatial CNN features $f_{w}(\cdot)$ is an MLP features from a pretrained CNN

Features:
$H \times W \times D$

Image Captioning using spatial features

Input: Image I
Output: Sequence $y=y_{1}, y_{2}, \ldots, y_{T}$

Decoder: $h_{t}=g_{v}\left(y_{t-1}, h_{t-1}, c\right)$ where context vector c is often $c=h_{0}$ and output $y_{t}=T\left(h_{t}\right)$

Encoder: $h_{0}=f_{w}(\mathbf{z})$ where \mathbf{z} is spatial CNN features $f_{w}(\cdot)$ is an MLP

Image Captioning using spatial features

Input: Image I
Output: Sequence $y=y_{1}, y_{2}, \ldots, y_{T}$

Decoder: $h_{t}=g_{v}\left(y_{t-1}, h_{t-1}, c\right)$ where context vector c is often $c=h_{0}$ and output $y_{t}=T\left(h_{t}\right)$

Encoder: $h_{0}=f_{w}(z)$
where \mathbf{z} is spatial CNN features $f_{w}($.$) is an MLP$

Q: What is the problem with this setup? Think back to last time...

Extract spatial features from a pretrained CNN
person

Image Captioning using spatial features

Answer: Input is "bottlenecked" through c

- Model needs to encode everything it wants to say within c

This is a problem if we want to generate really long descriptions? 100s of words long

Extract spatial features from a pretrained CNN

Image Captioning with RNNs and Attention

Attention Saccades in humans

Extract spatial features from a pretrained CNN

Image Captioning with RNNs and Attention

Image Captioning with RNNs and Attention

Image Captioning with RNNs and Attention

Compute alignments scores (scalars):
$e_{t, i, j}=f_{\text {att }}\left(h_{t-1}, z_{i, j}\right)$
$f_{\text {att }}($.$) is an MLP$

Extract spatial features from a pretrained CNN

Alignment scores: Attention:

Normalize to get attention weights:
$a_{t,:,:}=\operatorname{softmax}\left(e_{t,,:,}\right)$
$0<a_{\mathrm{t}, \mathrm{i}, \mathrm{j}}<1$,
attention values sum to 1

Compute context vector:

$$
c_{t}=\sum_{i, j} a_{t, i, j} z_{t, i, j}
$$

Image Captioning with RNNs and Attention

Each timestep of decoder uses a

different context vector that looks at different parts of the input image

Decoder: $y_{t}=g_{v}\left(y_{t-1}, h_{t-1}, c_{t}\right)$
New context vector at every time step

$$
\begin{aligned}
e_{t, i, j} & =f_{\text {att }}\left(h_{t-1}, z_{i, j}\right) \\
a_{t,:,:} & =\operatorname{softmax}\left(e_{t,:,:}\right) \\
c_{t} & =\sum_{i, j} a_{t, i, j} z_{t, i, j}
\end{aligned}
$$

Image Captioning with RNNs and Attention

Image Captioning with RNNs and Attention

Each timestep of decoder uses a

different context vector that looks at different parts of the input image

$$
\begin{aligned}
e_{t, i, j} & =f_{\text {att }}\left(h_{t-1}, z_{i, j}\right) \\
a_{t,:,:} & =\operatorname{softmax}\left(e_{t,:,:}\right) \\
c_{t} & =\sum_{i, j} a_{t, i, j} z_{t, i, j}
\end{aligned}
$$

Image Captioning with RNNs and Attention

Each timestep of decoder uses a

different context vector that looks at different parts of the input image

$$
\begin{aligned}
e_{t, i, j} & =f_{\text {att }}\left(h_{t-1}, z_{i, j}\right) \\
a_{t,:,:} & =\operatorname{softmax}\left(e_{t,:,:}\right) \\
c_{t} & =\sum_{i, j} a_{t, i, j} z_{t, i, j}
\end{aligned}
$$

Image Captioning with RNNs and Attention

Each timestep of decoder uses a

different context vector that looks at
Decoder: $y_{t}=g_{v}\left(y_{t-1}, h_{t-1}, c_{t}\right)$
New context vector at every time step different parts of the input image
$e_{t, i, j}=f_{\text {att }}\left(h_{t-1}, z_{i, j}\right)$
$a_{t,:,:}=\operatorname{softmax}\left(e_{t,:,:}\right)$

$$
c_{t}=\sum_{i, j} a_{t, i, j} z_{t, i, j}
$$

Extract spatial features from a pretrained CNN

Fei-Fei Li, Ehsan Adeli, Zane Durante

Image Captioning with RNNs and Attention

Fei-Fei Li, Ehsan Adeli, Zane Durante

Image Captioning with Attention

A woman is throwing a frisbee in a park.

A little girl sitting on a bed with a teddy bear.

A dog is standing on a hardwood floor.

A group of people sitting on a boat in the water.

A stop sign is on a road with a mountain in the background.

A giraffe standing in a forest with trees in the background.

Image Captioning with RNNs and Attention

Fei-Fei Li, Ehsan Adeli, Zane Durante

Attention we just saw in image captioning

∞	$z_{0,0}$	$z_{0,1}$	$\mathrm{z}_{0,2}$
?	$z_{1,0}$	$z_{1,1}$	$\mathrm{z}_{1,2}$
セ	$z_{2,0}$	$z_{2,1}$	$\mathrm{z}_{2,2}$

Inputs:

Features: \mathbf{z} (shape: $\mathrm{H} \times \mathrm{W} \times \mathrm{D}$)
Query: \mathbf{h} (shape: D) \leftarrow "query" refers to a vector used to calculate a corresponding context vector.

Attention we just saw in image captioning

Operations:
Alignment: $e_{i, j}=f_{a t t}\left(h, z_{i, j}\right)$

Inputs:
Features: z (shape: H x W x D)
Query: h (shape: D)

Attention we just saw in image captioning

Attention we just saw in image captioning

Attention we just saw in image captioning

Outputs:
context vector: c (shape: D)

Operations:
Alignment: $e_{i, j}=f_{a t t}\left(h, z_{i, j}\right)$ Attention: $\mathbf{a}=\operatorname{softmax}(\mathbf{e})$ Output: $\mathbf{c}=\sum_{i, j} a_{i, j} z_{i, j}$

Inputs:

Features: z (shape: H x W x D)
Query: h (shape: D)

General attention layer - used in LLMs + beyond

Attention operation is permutation invariant.

- Doesn't care about ordering of the features
- Stretch into $\mathbf{N}=\mathrm{H} \times \mathrm{W}$ vectors

General attention layer

Outputs:

context vector: c (shape: D)

Operations:

Alignment: $\mathrm{e}_{\mathrm{i}}=\mathrm{h} \cdot \mathrm{x}_{\mathrm{i}}$
Attention: $\mathbf{a}=\operatorname{softmax}(\mathbf{e})$ Output: $\mathbf{c}=\sum_{i} a_{i} x_{i}$

Change $f_{\text {att }}($.$) to a dot product, this actually$ can work well in practice, but a simple dot product can have some issues...

General attention layer

Outputs:

context vector: c (shape: D)

Operations:
Alignment: $e_{i}=h \cdot x_{i} / \sqrt{ } D$
Attention: a = softmax(e)
Output: $\mathbf{c}=\sum_{i} a_{i} x_{i}$

Change $f_{\text {att }}($.$) to a scaled simple dot product$

- Larger dimensions means more terms in the dot product sum.
- So, the variance of the logits is higher. Large magnitude vectors will produce much higher logits.
- So, the post-softmax distribution has lowerentropy, assuming logits are IID.
- Ultimately, these large magnitude vectors will cause softmax to peak and assign very little weight to all others
- Divide by $\sqrt{ } D$ to reduce effect of large magnitude vectors
- Similar to Xavier and Kaiming Initialization!

Inputs:

Input vectors: x (shape: N x D)
Query: h (shape: D)

General attention layer

Outputs:

context vectors: y (shape: D)

Multiple query vectors

- each query creates a new, corresponding output context vector

Allows us to compute multiple attention context vectors at once
Will go into more details in future slides, but this allows us to compute context vectors for multiple timesteps in parallel

General attention layer

Outputs:

context vectors: y (shape: D)

Operations:
Alignment: $e_{i, j}=q_{j} \cdot x_{i} / \sqrt{ } D$ Attention: $\mathbf{a}=\operatorname{softmax}(\mathbf{e})$ Output: $y_{j}=\sum_{i} a_{i, j} x_{i}$

Notice that the input vectors are used for both the alignment as well as the attention calculations.

- We can add more expressivity to the layer by adding a different FC layer before each of the two steps.

General attention layer

Operations:

Key vectors: $\mathrm{k}=\mathbf{x} \mathrm{W}_{\mathrm{k}}$ Value vectors: $v=\mathbf{x} W$

Notice that the input vectors are used for both the alignment as well as the attention calculations.

- We can add more expressivity to the layer by adding a different FC layer before each of the two steps.

General attention layer

Outputs:

context vectors: y (shape:

Operations:

Key vectors: $\mathrm{k}=\mathbf{x} \mathbf{W}_{\mathrm{k}}$ Value vectors: $v=\mathbf{x} W$ Alignment: $e_{i, j}=q_{j} \cdot k_{i} / \sqrt{ } D$ Attention: $\mathbf{a}=\operatorname{softmax}(\mathbf{e})$ Output: $y_{j}=\sum_{i} a_{i, j} v_{i}$

Inputs:
Input vectors: \mathbf{x} (shape: $\mathrm{N} \times \mathrm{D}$) Queries: \mathbf{q} (shape: $M \times D_{k}$)

General attention layer

This is a working example of how we could use an attention layer + CNN encoder for image captioning

Outputs:

context vectors: y (shape: D_{v})

Recall that the query vector was a function of the input vectors

Operations:

Key vectors: $\mathrm{k}=\mathbf{x} \mathrm{W}_{\mathrm{k}}$ Value vectors: $v=\mathbf{x} W$ Alignment: $e_{i, j}=q_{j} \cdot k_{i} / \sqrt{ } D$ Attention: $\mathbf{a}=\operatorname{softmax}(\mathbf{e})$ Output: $y_{j}=\sum_{i} a_{i, j} v_{i}$

Encoder: $\mathrm{h}_{0}=\mathrm{f}_{\mathrm{w}}(\mathbf{z})$ where \mathbf{z} is spatial CNN features $f_{w}($.$) is an MLP$

Inputs:
Input vectors: \mathbf{x} (shape: $\mathrm{N} \times \mathrm{D}$) Queries: \mathbf{q} (shape: $M \times D_{k}$)

Lecture 8 : Video Lecture Supplement Attention and Transformers

Next: The Self-attention Layer

Outputs:
context vectors: y (shape: D_{v})

Operations:
Key vectors: $\mathrm{k}=\mathbf{x} \mathbf{W}_{\mathrm{k}}$
Value vectors: $v=\mathbf{x} W$
Alignment: $e_{i, j}=q_{j} \cdot k_{i} / \sqrt{ } D$ Attention: $\mathbf{a}=\operatorname{softmax}(\mathbf{e})$ Output: $y_{j}=\sum_{i} a_{i, j} v$

Idea: leverages the strengths of attention layers without the need for separate query vectors.

Self attention layer

Operations:

We can calculate the query vectors from the input vectors, therefore,

Key vectors: $k=\mathbf{x} W_{k}$
Value vectors: $v=\mathbf{x} W$,

Query vectors: $q=\mathbf{x} W_{q}$
Alignment: $e_{i, i}=q_{i} \cdot k_{i} / \sqrt{ } D$

Instead, query vectors are calculated using a FC layer.
Attention: $\mathbf{a}=\operatorname{softmax}(\mathbf{e})$
Output: $y_{j}=\sum_{i} a_{i, j} v_{i}$ defining a "self-attention" layer.

Self attention layer

Self attention layer - attends over sets of inputs

Outputs:

context vectors: y (shape: D_{v})

Operations:

Key vectors: $k=\mathbf{x} W_{k}$ Value vectors: $v=\mathbf{x} W$ Query vectors: $q=\mathbf{x} W_{q}$ Alignment: $e_{i, j}=q_{j} \cdot k_{i} / \sqrt{ } D$

self-attention

 Attention: $\mathbf{a}=\operatorname{softmax}(\mathbf{e})$ Output: $y_{j}=\sum_{i} a_{i, j} v_{i}$

Self attention layer - attends over sets of inputs

self-attention

Permutation equivariant
Self-attention layer doesn't care about the orders of the inputs!
Problem: How can we encode ordered sequences like language or spatially ordered image features?

Positional encoding

self-attention

position encoding

Concatenate or add special positional encoding p_{j} to each input vector X_{j}

We use a function pos: $\mathrm{N} \rightarrow \mathrm{R}^{\mathrm{d}}$
to process the position j of the vector into a d-dimensional vector

Possible desirable properties of pos(.) :

1. It should output a unique encoding for each timestep (word's position in a sentence)
2. Distance between any two time-steps should be consistent across sentences with different lengths.
3. Our model should generalize to longer sentences without any efforts. Its values should be bounded.
4. It must be deterministic.

So, $\mathrm{p}_{\mathrm{j}}=\operatorname{pos}(\mathrm{j})$

Positional encoding

self-attention

position encoding

Concatenate special positional encoding p_{j} to each input vector x_{j}

We use a function pos: $\mathrm{N} \rightarrow \mathrm{R}^{\mathrm{d}}$ to process the position j of the vector into a d-dimensional vector

Options for pos(.)

1. Learn a lookup table:

- Learn parameters to use for pos(t) for $t \varepsilon[0, \mathrm{~T})$
- Lookup table contains T x d parameters.

Possible desirable properties of $\operatorname{pos}($.$) :$

1. It should output a unique encoding for each timestep (word's position in a sentence)
2. Distance between any two time-steps should be consistent across sentences with different lengths.
3. Our model should generalize to longer sentences without any efforts. Its values should be bounded.
4. It must be deterministic.

So, $\mathrm{p}_{\mathrm{j}}=\operatorname{pos}(\mathrm{j})$

Positional encoding

self-attention

position encoding

Concatenate special positional encoding p_{j} to each input vector x_{j}

We use a function pos: $\mathrm{N} \rightarrow \mathrm{R}^{\mathrm{d}}$ to process the position j of the vector into a d-dimensional vector

So, $\mathrm{p}_{\mathrm{j}}=\operatorname{pos}(\mathrm{j})$

Options for pos(.)

1. Learn a lookup table:

- Learn parameters to use for $\operatorname{pos}(\mathrm{t})$ for $\mathrm{t} \varepsilon[0, \mathrm{~T})$
- Lookup table contains T x d parameters.

2. Design a fixed function with the desired properties

Positional encoding

self-attention

position encoding

Concatenate special positional encoding p_{j} to each input vector x_{j}

We use a function pos: $\mathrm{N} \rightarrow \mathrm{R}^{\mathrm{d}}$ to process the position j of the vector into a d-dimensional vector

So, $\mathrm{p}_{\mathrm{j}}=\operatorname{pos}(\mathrm{j})$

Options for pos(.)

1. Learn a lookup table:

- Learn parameters to use for $\operatorname{pos}(\mathrm{t})$ for $\mathrm{t} \varepsilon[0, \mathrm{~T})$
- Lookup table contains T x d parameters.

2. Design a fixed function with the desired properties

Intuition:

where $\omega_{k}=\frac{1}{10000^{2 k / d}}$

Masked self-attention layer

Outputs:

context vectors: y (shape: D_{v})

- Allows us to parallelize attention across time

Operations:

Key vectors: $\mathrm{k}=\mathbf{x} \mathrm{W}_{\mathrm{k}}$ Value vectors: $v=\mathbf{x} W$ Query vectors: $q=\mathbf{x} W_{q}$ Alignment: $e_{i, j}=q_{j} \cdot k_{i} / \sqrt{ } D$ Attention: $\mathbf{a}=\operatorname{softmax}(\mathbf{e})$ Output: $\mathrm{y}_{\mathrm{j}}=\sum_{\mathrm{i}} \mathrm{a}_{\mathrm{i}, \mathrm{j}} \mathrm{v}_{\mathrm{i}}$

- Don't need to calculate the context vectors from the previous timestep first!
- Prevent vectors from looking at future vectors.
- Manually set alignment scores to -infinity (-nan)

Inputs:

Input vectors: \mathbf{x} (shape: $\mathrm{N} \times \mathrm{D}$)

Multi-head self-attention layer

- Multiple self-attention "heads" in parallel

Multi-head self-attention layer

- Multiple self-attention "heads" in parallel

A: We may want to have multiple sets of queries/keys/values calculated in the layer. This is a similar idea to having multiple conv filters learned in a layer

General attention versus self-attention

Transformer models rely on many, stacked self-attention layers

Comparing RNNs to Transformer

RNNs

(+) LSTMs work reasonably well for long sequences.
(-) Expects an ordered sequences of inputs
(-) Sequential computation: subsequent hidden states can only be computed after the previous ones are done.

Transformer:

(+) Good at long sequences. Each attention calculation looks at all inputs.
(+) Can operate over unordered sets or ordered sequences with positional encodings.
(+) Parallel computation: All alignment and attention scores for all inputs can be done in parallel.
(-) Requires a lot of memory: $\mathrm{N} \times \mathrm{M}$ alignment and attention scalers need to be calculated and stored for a single self-attention head. (but GPUs are getting bigger and better)

Attention Is All You Need

Ashish Vaswani ${ }^{*}$ Google Brain avaswani@google.com	Noam Shazeer* Google Brain noam@google.com	Niki Parmar* Google Research nikip@google.com	Jakob Uszkoreit ${ }^{*}$ Google Research usz@google.com
Llion Jones* Google Research llion@google.com	Aidan N. Gome University of Tor aidan@cs.toront	Lukasz Kaiser*Google Brainlukaszkaiser@google.com	
Illia Polosukhin* \ddagger illia.polosukhin@gmail.com			

"ImageNet Moment for Natural Language Processing"

Pretraining:

Download a lot of text from the internet

Train a giant Transformer model for language modeling

Finetuning:

Fine-tune the Transformer on your own NLP task

On the Opportunities and Risks of Foundation Models

Rishi Bommasani* Drew A. Hudson Ehsan Adeli Russ Altman Simran Arora Sydney von Arx Michael S. Bernstein Jeannette Bohg Antoine Bosselut Emma Brunskill Erik Brynjolfsson Shyamal Buch Dallas Card Rodrigo Castellon Niladri Chatterji Annie Chen Kathleen Creel Jared Quincy Davis Dorottya Demszky Chris Donahue Moussa Doumbouya Esin Durmus Stefano Ermon John Etchemendy Kawin Ethayarajh Li Fei-Fei Chelsea Finn Trevor Gale Lauren Gillespie Karan Goel Noah Goodman Shelby Grossman Neel Guha Tatsunori Hashimoto Peter Henderson John Hewitt Daniel E. Ho Jenny Hong Kyle Hsu Jing Huang Thomas Icard Saahil Jain Dan Jurafsky Pratyusha Kalluri Siddharth Karamcheti Geoff Keeling Fereshte Khani Omar Khattab Pang Wei Koh Mark Krass Ranjay Krishna Rohith Kuditipudi Ananya Kumar Faisal Ladhak Mina Lee Tony Lee Jure Leskovec Isabelle Levent Xiang Lisa Li Xuechen Li Tengyu Ma Ali Malik Christopher D. Manning Suvir Mirchandani Eric Mitchell Zanele Munyikwa Suraj Nair Avanika Narayan Deepak Narayanan Ben Newman Allen Nie Juan Carlos Niebles Hamed Nilforoshan Julian Nyarko Giray Ogut Laurel Orr Isabel Papadimitriou Joon Sung Park Chris Piech Eva Portelance Christopher Potts Aditi Raghunathan Rob Reich Hongyu Ren Frieda Rong Yusuf Roohani Camilo Ruiz Jack Ryan Christopher Ré Dorsa Sadigh Shiori Sagawa Keshav Santhanam Andy Shih Krishnan Srinivasan Alex Tamkin Rohan Taori Armin W. Thomas Florian Tramèr Rose E. Wang William Wang Bohan Wu Jiajun Wu Yuhuai Wu Sang Michael Xie Michihiro Yasunaga Jiaxuan You Matei Zaharia Michael Zhang Tianyi Zhang Xikun Zhang Yuhui Zhang Lucia Zheng Kaitlyn Zhou Percy Liang*1

Center for Research on Foundation Models (CRFM) Stanford Institute for Human-Centered Artificial Intelligence (HAI)

Stanford University

Image Captioning using Transformers

Input: Image I

Output: Sequence $y=y_{1}, y_{2}, \ldots, y_{T}$

$z_{0,0}$	$z_{0,1}$	$z_{0,2}$		
$z_{1,0}$	$z_{1,1}$	$z_{1,2}$		
$z_{2,0}$	$z_{2,1}$	$z_{2,2}$		Features:
:---				
Extract spatial features from C pretrained CNN				

Image Captioning using Transformers

Input: Image I
Output: Sequence $y=y_{1}, y_{2}, \ldots, y_{T}$

Encoder: c = Tw(\mathbf{z})

where \mathbf{z} is spatial CNN features
$T_{w}($.$) is the transformer encoder$

Image Captioning using Transformers

Input: Image I
Output: Sequence $y=y_{1}, y_{2}, \ldots, y_{T}$

Decoder: $y_{t}=T_{D}\left(\mathbf{y}_{0: t-1}, \mathbf{c}\right)$ where $T_{D}($.$) is the transformer decoder$

Encoder: $\mathbf{c}=\mathrm{T}_{\mathrm{w}}(\mathbf{z})$
where \mathbf{z} is spatial CNN features $T_{w}(\cdot)$ is the transformer encoder

The Transformer encoder block

Made up of N encoder blocks.
In vaswani et al. $\mathrm{N}=6, \mathrm{D}_{\mathrm{q}}=512$

The Transformer encoder block

Let's dive into one encoder block

The Transformer encoder block

Attention attends over all the vectors

The Transformer encoder block

Residual connection

Attention attends over all the vectors

The Transformer encoder block

LayerNorm over each vector individually
Residual connection

Attention attends over all the vectors

The Transformer encoder block

MLP over each vector individually
LayerNorm over each vector individually
Residual connection

Attention attends over all the vectors

The Transformer encoder block

Residual connection

MLP over each vector individually
LayerNorm over each vector individually
Residual connection

Attention attends over all the vectors

The Transformer encoder block

LayerNorm over each vector individually
Residual connection
MLP over each vector individually
LayerNorm over each vector individually
Residual connection

Attention attends over all the vectors

The Transformer encoder block

Transformer Encoder Block:

Inputs: Set of vectors \mathbf{x} Outputs: Set of vectors \mathbf{y}

Self-attention is the only interaction between vectors.

Layer norm and MLP operate independently per vector.

Highly scalable, highly parallelizable, but high memory usage.

The Transformer decoder

Made up of N decoder blocks.
In vaswani et al. $N=6, D_{q}=512$

The Transformer decoder block

Let's dive into the transformer decoder block

The Transformer decoder block

Most of the network is the same the transformer encoder.

Ensures we only look at the previous tokens (teacher forcing during training)

The Transformer decoder block

The Transformer decoder block

Image Captioning using transformers

- No recurrence at all

Image Captioning using transformers

- Perhaps we don't need convolutions at all?

Image Captioning using ONLY transformers

- Transformers from pixels to language

ViTs - Vision Transformers

Vision Transformers vs. ResNets

Figure 5: Performance versus cost for different architectures: Vision Transformers, ResNets, and hybrids. Vision Transformers generally outperform ResNets with the same computational budget. Hybrids improve upon pure Transformers for smaller model sizes, but the gap vanishes for larger models.

Vision Transformers

Fan et al, "Multiscale Vision Transformers", ICCV 2021

Liu et al, "Swin Transformer: Hierarchical Vision Transformer using Shifted Windows", CVPR 2021

set of image features
set of box predictions
bipartite matching loss
Carion et al, "End-to-End Object Detection with Transformers",
ECCV 2020

ImageNet-1K Acc.
ConvNets strike back!

A ConvNet for the 2020s. Liu et al. CVPR 2022

Fei-Fei Li, Ehsan Adeli, Zane Durante Lecture 9-104 April 25, 2024

DeiT III: Revenge of the ViT

Hugo Touvron ${ }^{\star, \dagger}$ Matthieu Cord ${ }^{\dagger}$ Hervé Jégou ${ }^{\star}$

ImageNet-1k

ImageNet-21k

Summary

- Adding attention to RNNs allows them to "attend" to different parts of the input at every time step
- The general attention layer is a new type of layer that can be used to design new neural network architectures
- Transformers are a type of layer that uses self-attention and layer norm.
- It is highly scalable and highly parallelizable
- Faster training, larger models, better performance across vision and language tasks
- They are quickly replacing RNNs, LSTMs, and may(?) even replace convolutions.

Next time: Object Detection + Segmentation

Appendix Slides from Previous Years

Image Captioning with Attention

Example: CNN with Self-Attention

Input Image

Example: CNN with Self-Attention

Self-Attention Module

