
Backpropagation for a Linear Layer

Justin Johnson

April 19, 2017

In these notes we will explicitly derive the equations to use when backprop-
agating through a linear layer, using minibatches.

During the forward pass, the linear layer takes an input X of shape N ×D
and a weight matrix W of shape D ×M , and computes an output Y = XW
of shape N ×M by computing the matrix product of the two inputs. To make
things even more concrete, we will consider the case N = 2, D = 2, M = 3.

We can then write out the forward pass in terms of the elements of the
inputs:

X =

(
x1,1 x1,2

x2,1 x2,2

)
W =

(
w1,1 w1,2 w1,3

w2,1 w2,2 w2,3

)
(1)

Y = XW (2)

=

(
x1,1w1,1 + x1,2w2,1 x1,1w1,2 + x1,2w2,2 x1,1w1,3 + x1,2w2,3

x2,1w1,1 + x2,2w2,1 x2,1w1,2 + x2,2w2,2 x2,1w1,3 + x2,2w2,3

)
(3)

After the forward pass, we assume that the output will be used in other
parts of the network, and will eventually be used to compute a scalar loss L.

During the backward pass through the linear layer, we assume that the
derivative ∂L

∂Y has already been computed. For example if the linear layer is
part of a linear classifier, then the matrix Y gives class scores; these scores
are fed to a loss function (such as the softmax or multiclass SVM loss) which
computes the scalar loss L and derivative ∂L

∂Y of the loss with respect to the
scores.

Since L is a scalar and Y is a matrix of shape N × M , the gradient ∂L
∂Y

will be a matrix with the same shape as Y , where each element of ∂L
∂Y gives the

derivative of the loss L with respect to one element of Y :

∂L

∂Y
=

(
∂L

∂y1,1

∂L
∂y1,2

∂L
∂y1,3

∂L
∂y2,1

∂L
∂y2,2

∂L
∂y2,3

)
(4)

During the backward pass our goal is to use ∂L
∂Y in order to compute ∂L

∂X and
∂L
∂W . Again, since L is a scalar we know that ∂L

∂X must have the same shape as

X (N ×D) and ∂L
∂W must have the same shape as W (D ×M).

1



By the chain rule, we know that:

∂L

∂X
=

∂L

∂Y

∂Y

∂X

∂L

∂W
=

∂L

∂Y

∂Y

∂W
(5)

The terms ∂Y
∂X and ∂Y

∂W in Equation 5 are Jacobian matrices containing the
partial derivative of each element of Y with respect to each element of the inputs
X and W .

However we do not want to form the Jacobian matrices ∂Y
∂X and ∂Y

∂W explicitly,
because they will be very large. In a typical neural network we might have
N = 64 and M = D = 4096; then ∂Y

∂X consists of 64 ·4096 ·64 ·4096 scalar values;
this is more than 68 billion numbers; using 32-bit floating point, this Jacobian
matrix will take 256 GB of memory to store. Therefore it is completely hopeless
to try and explicitly store and manipulate the Jacobian matrix.

However it turns out that for most common neural network layers, we can
derive expressions that compute the product ∂Y

∂X
∂L
∂Y without explicitly forming

the Jacobian ∂Y
∂X . Even better, we can typically derive this expression without

even computing an explicit expression for the Jacobian ∂Y
∂X ; in many cases we

can work out a small case on paper and then infer the general formula.
Let’s see how this works out for our specific case of N = 2, D = 2, M = 3.

We first tackle ∂L
∂X . Again, we know that ∂L

∂X must have the same shape as X:

X =

(
x1,1 x1,2

x2,1 x2,2

)
=⇒ ∂L

∂X
=

(
∂L

∂x1,1

∂L
∂x1,2

∂L
∂x2,1

∂L
∂x2,2

)
(6)

We can proceed one element of a time. First we will compute ∂L
∂x1,1

. By the

chain rule, we know that

∂L

∂x1,1
=

N∑
i=1

M∑
j=1

∂L

∂yi,j

∂yi,j
∂x1,1

=
∂L

∂Y
· ∂Y

∂x1,1
(7)

In the above equation L and x1,1 are scalars so ∂L
∂x1,1

is also a scalar. If we

view Y not as a matrix but as a collection of intermediate scalar variables, then
we can use the chain rule to write ∂L

∂x1,1
solely in terms of scalar derivatives.

To avoid working with sums, it is convenient to collect all terms ∂L
∂yi,j

into

a single matrix ∂L
∂Y ; here L is a scalar and Y is a matrix, so ∂L

∂Y has the same

shape as Y (N ×M), where each element of ∂L
∂Y gives the derivative of L with

respect to one element of Y . We similarly collect all terms
∂yi,j

∂x1,1
into a single

matrix ∂Y
∂x1,1

; since Y is a matrix and x1,1 is a scalar, ∂Y
∂x1,1

is a matrix with the

same shape as Y (N ×M).
Since ∂L

∂x1,1
is a scalar, we know that the product of ∂L

∂Y and ∂Y
∂x1,1

must be a

scalar; by inspecting the expression using only scalar derivatives, it is clear that
in this context the product of ∂L

∂Y and ∂Y
∂x1,1

must be a dot product.

2



In the backward pass we are already given ∂L
∂Y , so we only need to compute

∂L
∂x1,1

; we can easily compute this from Equation 3:

∂Y

∂x1,1
=

(
w1,1 w1,2 w1,3

0 0 0

)
(8)

Now combining Equations 6, 7, and 8 gives:

∂L

∂x1,1
=

∂L

∂Y

∂Y

∂x1,1
(9)

=

(
∂L

∂y1,1

∂L
∂y1,2

∂L
∂y1,3

∂L
∂y2,1

∂L
∂y2,2

∂L
∂y2,3

)
·
(
w1,1 w1,2 w1,3

0 0 0

)
(10)

=
∂L

∂y1,1
w1,1 +

∂L

∂y1,2
w1,2 +

∂L

∂y1,3
w1,3 (11)

We can now repeat the process to compute the other entries of ∂L
∂X , one

element at a time:

∂L

∂x1,2
=

∂L

∂Y

∂Y

∂x1,2
(12)

=

(
∂L

∂y1,1

∂L
∂y1,2

∂L
∂y1,3

∂L
∂y2,1

∂L
∂y2,2

∂L
∂y2,3

)
·
(
w2,1 w2,2 w2,3

0 0 0

)
(13)

=
∂L

∂y1,1
w2,1 +

∂L

∂y1,2
w2,2 +

∂L

∂y1,3
w2,3 (14)

∂L

∂x2,1
=

∂L

∂Y

∂Y

∂x2,1
(15)

=

(
∂L

∂y1,1

∂L
∂y1,2

∂L
∂y1,3

∂L
∂y2,1

∂L
∂y2,2

∂L
∂y2,3

)
·
(

0 0 0
w1,1 w1,2 w1,3

)
(16)

=
∂L

∂y2,1
w1,1 +

∂L

∂y2,2
w1,2 +

∂L

∂y2,3
w1,3 (17)

∂L

∂x2,2
=

∂L

∂Y

∂Y

∂x2,2
(18)

=

(
∂L

∂y1,1

∂L
∂y1,2

∂L
∂y1,3

∂L
∂y2,1

∂L
∂y2,2

∂L
∂y2,3

)
·
(

0 0 0
w2,1 w2,2 w2,3

)
(19)

=
∂L

∂y2,1
w2,1 +

∂L

∂y2,2
w2,2 +

∂L

∂y2,3
w2,3 (20)

(21)

Finally we can combine Equations 9, 14, 17, and 20 to give a single expression
for ∂L

∂X in terms of W and ∂L
∂Y :

3



∂L

∂X
=

(
∂L

∂y1,1
w1,1 + ∂L

∂y1,2
w1,2 + ∂L

∂y1,3
w1,3

∂L
∂y1,1

w2,1 + ∂L
∂y1,2

w2,2 + ∂L
∂y1,3

w2,3

∂L
∂y2,1

w1,1 + ∂L
∂y2,2

w1,2 + ∂L
∂y2,3

w1,3
∂L

∂y2,1
w2,1 + ∂L

∂y2,2
w2,2 + ∂L

∂y2,3
w2,3

)
(22)

=

(
∂L

∂y1,1

∂L
∂y1,2

∂L
∂y1,3

∂L
∂y2,1

∂L
∂y2,2

∂L
∂y2,3

)w1,1 w2,1

w1,2 w2,2

w1,3 w2,3

 (23)

=
∂L

∂Y
WT (24)

In Equation 24, recall that ∂L
∂Y is a matrix of shape N×M and W is a matrix

of shape D×M ; thus ∂L
∂X = ∂L

∂Y WT has shape N ×D, which is the same shape
as X.

We derived Equation 24 in the specific case of N = D = 2,M = 3, but it
holds for any values of N , D, and M . This equation allows us to efficiently
compute ∂L

∂X using ∂L
∂Y and W , without explicitly forming the Jacobian ∂Y

∂X .
Using the same strategy of thinking about components one at a time, you

can derive a similarly simple equation to compute ∂L
∂W without explicitly forming

the Jacobian ∂Y
∂W :

∂L

∂W
= XT ∂L

∂Y
(25)

In this equation ∂L
∂W must have the same shape as W (D×M); on the right

hand side X is a matrix of shape N ×D and ∂L
∂Y is a matrix of shape N ×M , so

the matrix-matrix product on the right will produce a matrix of shape D×M .
This strategy of thinking one element at a time can help you to derive

equations for backpropagation for a layer even when the inputs and outputs to
the layer are tensors of arbitrary shape; this can be particularly valuable for
example when deriving backpropagation for a convolutional layer.

4


