
Plankton Species Identification via Convolutional Neural Networks

Michael DAngelo
Stanford University

mdangelo@stanford.edu

Josh Tennefoss
Stanford University
joshx@stanford.edu

Abstract

In this paper we demonstrate a method to identify photo-
plankton species from gray-scale images. The images have
been pre-processed by Kaggle as part of The National Data
Science Bowl (NDSB) [3] to produce scenes containing a
single photoplankton species. We implemented and tested
several different architectures of multilayer convolutional
neural networks on AWS using K40 GPUs and Caffe’s open
source neural networks libraries. Our best performance ar-
chitecture is a 29 layer network that achieves a testing ac-
curacy of 26.1% in predicting the correct class out of 121
possible different classes.

1. Introduction
Plankton are small, prevalent sea creatures that float

throughout our oceans, gathering sunlight and feeding
larger animals. There are 1000’s of uniquely identified
species of photoplankton, each of which serves a unique
purpose in their environment. Understanding each species
movements, diversity, population density, and growth pat-
terns are crucial for gathering insight into the life cycles of
our oceans. However, since there cane be hundreds of thou-
sands of Plankton per square meter, manually identifying
species is a futile task. Machine vision algorithms for au-
tomatic identification of plankton species in underwater im-
ages will allow Plankton to be tracked at the scale necessary
for accurate documentation.

2. Competition
Kaggle, in combination with the Hatfield Marine Science

Center at Oregon State University, has established this com-
petition to encourage participants to build efficient plankton
species type classifiers.

2.1. Dataset

All data from this paper was prepared and distributed
through Kaggle. Kaggle is an online data science com-
petition platform on which different groups can post their

Figure 1. Sample images from NDSB dataset.

datasets and prediction challenges that sit on those datasets.
To incentive people to work on the problems they often pro-
vide prizes for the top performing models. The challenge
that provided the data for plankton species identification is
called the National Data Science Bowl (NDSB) and offers
$175,000 in prizes for the best performing algorithms.

According to the NDSB: ”For this competition, Hatfield
scientists have prepared a large collection of labeled images,
approximately 30k of which are provided as a training set.
Each raw image was run through an automatic process to
extract regions of interest, resulting in smaller images that
contain a single organism/entity.” [2] Examples of some of
these images may be seen in figure 1.

The NDSB also provides an unlabeled test set composed
of approximately 150K images. All images in the NDSB
training and test datasets are grayscale, ranging in dimen-
sional area from from 861 pixels2 to 163590 pixels2. Fig-
ure 2 presents a histogram of image area over the training
set.

As can be seen from the histogram, most images are be-
low 5000 pixels 2. We tried to consider the useful are of
the images when designing our network architecture. Be-
fore training the networks we subtracted the mean image of
the entire training set from each training example (and, if
applicable, the mean image from the pre-trained network).
Figure 3 represents the mean image when all images in the

1

Figure 2. Distribution of area of images in the NDSB dataset.

Figure 3. Mean image from the training dataset at 96x96 pixels.

training set have been resized via stretching with a bicubic
sampling function to 96x96 pixels.

The NDSB training set provided by Kaggle was split into
training and validation sets for our network. After experi-
menting with several different division strategies, we chose
to randomly select 30% of the images from each class in the
training set to be considered our validation set. We chose
this strategy because it seemed to provide good validation
accuracy in comparison to other divisions, and we found
ample support in existing literature.

In addition to the raw images that were provided to us
by the NDSB we created additional training sets of data by
cropping, flipping, stretching, warping, and changing the
contrast of the images. This was done prior to rescaling
the images to a consistent size for training. This will be
discussed in detail below in the data augmentation segment
of this paper.

2.2. Evaluation Criteria

There are 121 uniquely identified species of photoplank-
ton in the dataset provided for the competition. Kaggle asks

us to give predictions for each image in the test set in the
form of per class probabilities. For each example, competi-
tors must submit a 130,400 by 121 CSV file with probabili-
ties for each example that sum to 1. They will then evaluate
our scores by the following log-loss function:

logloss = − 1

N

N∑
i=1

M∑
j=1

yij log pij

N represents the number of images in the test set, M rep-
resents the number of class labels, yij is 1 if observation
i is in class j and 0 otherwise, and pij is the probability
that image i is class j. Kaggle composed additional con-
straints by limiting probability scores to be between 10−15

and 1− 10−15.
Our best performing network had a logloss score of 1.34,

which corresponds predicting the correct class with 26.1%
probability. We will discuss this below in greater detail.

3. Background
Convolutional neural networks have been gaining trac-

tion in the last decade due to increase data availability, com-
puting power, and software for relatively quick training. In
particular they have been successful in image classification
tasks, including the popular ImageNet challenge. We are
lucky to have had a class offered at Stanford that taught of
the ins and outs of these networks without having to be-
gin learning about them from the literature. Though the
implementations in this paper leverage what we learned in
CS231N, keeping up with the current literature would cer-
tainly help us improve these models.

4. Infrastructure
In this section, we will discuss the infrastructure that we

established in order to train and validate networks.

4.1. AWS

We used two AWS EC2 GPU instances as our pri-
mary computing resource. These instances were built with
Ubuntu 14.04 and Cuda 6.5. Using high end K40 GPUs,
we were able to drastically decrease network training and
prediction time. For an 18 layer network we built with 12%
prediction accuracy, the network typically took on the order
of 51 seconds per epoch, versus approximately 300 seconds
in CPU mode, constituting a 5X speedup.

4.2. Convolutional Neural Network Framework

Caffe is a convolutional neural networks framework that
was born out of UC Berkley. They have created relatively
simple interfaces for adjusting network architecture and
have options that allow GPU implementation [1]. We wrote
wrappers around Caffe that set up our network using Bash

2

Figure 4. Network in Network Topology

Topology Layers Validation Accuracy Test Accuracy
ImageNet 27 68.3% 24.5%
NIN 31 66.1% 26.1%

Figure 5. Network Performance Statistics

scripts and python. Additionally, we used ipython notebook
to visualize our networks layers and perform computations
where visual inspection was needed, as our AWS instances
had no gui packages installed.

5. Architecture

After experimenting with several different network ar-
chitectures, we settled on a Network in Network model
based on the work of Min Lin REF. This network is com-
posed of 31 layers, representing several convolutions with a
large fully connected network at the output.

The architecture of the NIN model may be visualized in
figure 4. Notice the repeated sets of convolutional layers
and the final fully connected layer.

The network architecture can be textually visualized as
follows:
INPUT → [[CONV → RELU]*3 → POOL]*3 → DROP
→ [[CONV→ RELU]*3→ POOL]→ SOFTMAX

Table 6 represents the parameters associated with each
layer.

6. Looking Deeper into the Net

Some people consider neural networks to be black boxes.
This might be partially true since it is difficult to understand
reason certain weights are increased during training. But it
is possible and insightful to analyze the features of a trained
networks.

6.1. Filter Visualizations

In class we talked about the benefit of visualizing net-
work weights to improve our insight into what the network
is doing. The next page includes a number of sample weight
visualizations from a single image that was run through the
network.

Name Output Kernel Stride
conv1 96 11 4
cccp1 96 1 1
cccp2 96 1 1
pool0 (Max) 3 2
conv2 256 5 1
cccp3 256 1 1
cccp4 256 1 1
pool2 (Max) 3 2
conv3 384 3 1
cccp5 384 1 1
cccp6 384 1 1
pool3 (Max) 3 2
drop dropout ratio: 0.5
conv4-1024 1024 3 1
cccp7-1024 1024 1 1
cccp8-121 121 1 1
pool4-1 (Average) 6 1
loss-1 Softmax Loss

Figure 6. Network in Network Topology

Figure 7. Example image for analysis. Class: Stomatopod.

6.2. Failure Analysis

Our network’s best case performance was 26%. The au-
thors hypothesize that there are two main reasons for rela-
tive low performance of our network. 1) Many of the classes
the network predicted over in the training set were visu-
ally similar. There was no color information, and 2) many
classes had very few training examples (in some cases as
few as 9), while other classes had over 2000 images. A
histogram of examples by class size in the training and val-
idation sets may be seen below as figure 12. (In addition,
it is very possible that we made some prediction mistakes
regarding mean image subtraction that we did not have time
to fix.)

3

Figure 8. First layer filter visualizations of the image.

Figure 9. First layer output of the single image.

Figure 10. Final fully-connected layer output.

Because there were so few examples of some classes
in our training set, the features relating to classes with

Figure 11. Final probability output from network. Notice that the
wrong class had the highest score, since the correct class is 106,
but the network predicted 112. See Failure Analysis section for
further discussion.

Figure 12. Histogram of number of examples per class. Note his-
togram was clipped. Some classes contain up to 2000 examples.

few examples are likely to not accurately represent what
they are intended to predict. We see this in classes
like hydromedusae haliscera small sideview which yield
no classifications in our test set and which is only sub-
tlety different than hydromedusae haliscera with 229 ex-
amples, and the 3099 other examples divided into the 21
hydromedusae subclasses. An example of the similarity
between hydromedusae haliscera small sideview and hy-
dromedusae haliscera can be seen below.

If we examine the results of a prediction of the image
in 7, as presented in 11, we can see that class 3 and class
81 also scored very highly and nearly resulted in a miss-
classification. Examples of class 3 and class 81 may be
viewed below as figures 15 and 16.

Clearly these images are visually similar. In training our

4

Figure 13. Haliscera Side-
view

Figure 14. Haliscera

Figure 15. Example image for analysis. Class: Amphipod.

Figure 16. Example image for analysis. Class: Polychaete.

network was unable to find sufficiently unique features to
distinguish many classes.

7. Reducing Overfitting
We employed many commonly used techniques in our

network to reduce overfitting. These techniques include
using dropout, building ensemble models of different net-
works trained with different training and validation classes,
using data augmentation to perspective warp, contrast
stretch, and distort images, and employing transfer learn-
ing.

7.1. Data Augmentation

Several different forms of data augmentation were em-
ployed, both internal and external to Caffe. We wrote fil-
ters for edge detection, adaptive contrast normalization, per-
spective warp, rotations, and blurring. In addition, Caffe
provided an interface for random crops and flips. These
filters did not seem to have significant affect on our vali-
dation accuracy, nor did they significantly improve our test
accuracy. Our best case network without data augmentation
yielded 23.9% correct class prediction. With data augmen-

Figure 17. Example Data Augmentation

Figure 18. Mean image from network-in-network pretrained
weights.

tation the performance rose to 26.1%. Some examples of
different data augmentation we performed may be viewed
below as figure 17

Data augmentation was performed on each image, and
the augmented images were added to the training set to
serve as more data examples.

7.2. Transfer Learning

We experimented with transfer learning with several dif-
ferent networks as part of Caffe’s Model Zoo. Our best
performance topologies include networks built for the 2012
ImageNet challenge ILSVRC2012 and the Network in Net-
work model built by Min Lin [4]. The network in network
model contains 31 layers and was designed for the imagenet
challenge with 1000 classes in the final layer. We adapted
this network by replacing the last layer with a 121 class soft-
max probability layer and trained the network for 10,000
iterations. We used the mean image as seen in figure 18
as opposed to the mean image from our dataset in figure
3. Further, we decreased the learning rate when training as
to not overtrain. The layer weights presented in this paper
were taken from this network.

Figure 19 shows the training loss over the first 1000 iter-
ations of training the NIN network with a modified softmax
probability layer.

As can be seen from the figure, the network very quickly

5

Figure 19. Loss over first 1000 iterations of training

learns final layer weights and converges. The final loss after
50,000 iterations was approximately 1.

8. Discussion
This discussion section focuses on a few things we

learned while doing this project.
The most significant of these experiences was learning

the basics of Caffe, including installation and running sim-
ple networks. Just being able to take a model from the
model zoo, replace the last fully connected layer, and re-
train with new data is incredibly powerful for many task. In
fact, one of the authors will be using Caffe in this manner
for his work in computer vision.

By working through this project, we learned that there
can be many limiting factors that inhibit high network ac-
curacies. These are addressed in the following section. The
most notable of these is the amount of time it takes to train
and test a network. We saw first hand that training a convnet
is not like training a traditional ML classifier like an SVM
or KNN, it can take much longer and is as much an art as it
is a science.

Along this same vein, after looking at our classmates
posters and listening to the lectures on convets, it is clear
that the technology is in its infancy. In other words, we
learned: if you have an idea that you haven’t seen in the
literature: its worth trying it out. Who knows, maybe it’s a
crazy idea like dropout that ends up working wonders.

9. Challenges
Much of our time working on this project was taken up

by a few recurring challenges.
First, getting Caffe up and running on an EC2 instance,

with the proper GPU libraries was not a trivial task. During
this process we noticed that the documentation for Caffe is
incomplete, and it is still a young library.

Once the library was working on the examples we moved
to training our own models. Using the mean image in the

network proved to be a difficulty. After a lot of experimen-
tation we were unable to train our own networking using
a mean image that we generated. As a temporary work
around we subtracted the mean image in our data augmen-
tation script. However, in the end, we moved to using pre-
trained models to take advantage of transfer learning, and
we did not encounter the same mean image problems with
those networks.

Once we had a trained network, we moved to predicting
image classes on the test set to send into Kaggle. Using
the normal Python predictions scripts, we found that is was
quite slow to predict on the whole test dataset. We were
required to predict on the whole set in order to submit to
Kaggle. As a results we had to run the prediction script for
about 24 hours each time we wanted to submit to Kaggle. In
addition, we believe that we might have been having prob-
lems with the prediction script since some of our best test
accuracy was about 26.1% but our validation accuracy was
68% at that time. In general we found that it was difficult to
debug the predictions.

In general the two most time-consuming challenges that
we faced was time limitations and limited Caffe documen-
tation.

There are so many things to experiment with in neural
networks that we felt we did not have time to test all of
them. Since these were the first convolution networks we
had ever trained we were interested in trying a large range
of tests, but we found that we didn’t have the time to try all
of these since a significant amount of our time was spent
getting the code running and debugging problems.

We found that the Caffe documentation was not compre-
hensive enough to be much help with debugging or imple-
menting some techniques that we wanted to try. We both
plan to use convolutional nets in the future, and are hopeful
that the documentation for Caffe will continue to improve.

10. Acknowledgements
We would like to thank the CS231N teaching team for

putting together a great course. We hope the next years
courses go as well as this one.

References
[1] Caffe description. http://caffe.berkeleyvision.

org/. Accessed: 2015-02-14.
[2] Nation Data Science Bowl data description. https://www.

kaggle.com/c/datasciencebowl/data. Accessed:
2015-02-14.

[3] Nation Data Science Bowl kaggle description. https://
www.kaggle.com/c/datasciencebowl. Accessed:
2015-02-14.

[4] M. Lin, Q. Chen, and S. Yan. Network in network. CoRR,
abs/1312.4400, 2013.

6

http://caffe.berkeleyvision.org/
http://caffe.berkeleyvision.org/
https://www.kaggle.com/c/datasciencebowl/data
https://www.kaggle.com/c/datasciencebowl/data
https://www.kaggle.com/c/datasciencebowl
https://www.kaggle.com/c/datasciencebowl

