
Denoising Convolutional Autoencoders for Noisy Speech Recognition

Mike Kayser
Stanford University

mkayser@stanford.edu

Victor Zhong
Stanford University

vzhong@stanford.edu

Abstract

We propose the use of a deep denoising convolu-
tional autoencoder to mitigate problems of noise in
real-world automatic speech recognition. We propose
an overall pipeline for denoising, experiment with a
variety of network architectures and configuration pa-
rameters, and report results on an intermediate recon-
struction error metric. Our experiments show that op-
timal configuration for convolutional denoising varies
significantly from that for standard CNN tasks such as
image recognition. Further, the proposed method eas-
ily beats a simple baseline and anecdotally displays
interesting behavior. A number of avenues for further
research are discussed.

1. Introduction

Automatic speech recognition (ASR) is a funda-
mental task for a variety of real-world systems such as
speech transcription and intelligent assistants. How-
ever, ASR in real, noisy environments is an ongoing
challenge. For example, background noise from a cafe
or from wind can significantly reduce speech recogni-
tion accuracy.

One approach to making ASR robust to noise is to
denoise the input raw audio before processing by de-
convolving or filtering out noise. Another is simply to
add noisy exemplars to training. In this work, we will
take the first approach and apply convolutional neural
networks to audio input denoising.

2. Related Work

Audio denoising has been approached using tech-
niques such as non-negative matrix factorization,
training separate noise and voice GMM’s, and noise-

invariant feature extraction [6]. Neural networks have
also been previously applied to this task, e.g. the re-
current neural network approach of [3].

CNN’s have been applied to general speech recog-
nition [1] and to distant speech recognition, a sub-
genre of noisy speech recognition [5]. Our work dif-
fers from the latter because we focus on denoising as
a discrete task, and we focus on raw spectral represen-
tations rather than more processed filterbank outputs.

It is also notable that convolutional networks have
been used for potentially related tasks, such as image
deblurring. Since image blur and audio reverberation
(one form of noise) can both be seen as convolutions,
one may surmise that CNN’s success in image deblur-
ring implies potential for CNNs for at least some types
of audio denoising.

3. Methodology

In this section, we specify the details of the denois-
ing task, and introduce the denoising convolutional au-
toencoder that seeks to produce the spectrogram cor-
responding to the clean audio track given the spectro-
gram of the noisy audio track.

3.1. Choice of Technical Approach

We envision two major ways to apply CNN’s to
speech denoising, assuming the existence of a base-
line speech recognition system. In the first approach,
we denoise a spectrogram, and extract Mel Frequency
Cepstral Coefficient (MFCC) features deterministi-
cally for use in the speech recognizer.

Alternatively, we could use a CNN to directly gen-
erate MFCC’s, e.g. by adding a multilayer percep-
tron to the final layers of the network. These two ap-
proaches can be seen in Figure 1.

In this project, we primarily focus on method 1.

1



Figure 1. Two possible approaches for CNN denoising. In
method 1 (top), a noisy spectrogram is given to the CNN,
which produces a cleaned spectrogram. The cleaned out-
put is used to generate MFCC’s using a deterministic pro-
cedure. The MFCC’s are used directly by an HMM-based
speech recognition engine, such as HTK [2]. In method 2
(bottom), a multilayer perceptron appended to the CNN di-
rectly produces MFCC features, which are used as before
by the speech recognizer.

3.2. Task Definition

In our work we focus on the reconstruction sub-
task, rather than the full ASR task. In particular, if
C denotes a spectrogram of a clean audio snippet,
andN denotes the corresponding artificially noised in-
stance, then we attempt to learn a mapping Fθ, with
parameters θ, which can approximately generate C
given N as input. Then, given a set of training pairs
T = {(Ci, Ni) : 1 ≤ i ≤ n}, we measure perfor-
mance as mean squared error of the predicted clean
output compared to the true clean output:

Loss(θ, T ) =
1

n

n∑
i=1

(Fθ(Ni)− Ci)2 (1)

Our focus on this metric has the downside that it
does not allow us to directly compare with other de-
noising methods, such as other submissions to the
CHiME challenge as described below. However, it af-
forded us maximal time during the brief duration of the
project to focus on maximizing the CNN’s denoising
performance, rather than setting up more complex ex-
periment pipelines requiring integration with a speech
recognizer.

Note that if the spectrogram is appropriately dis-
cretized, the result is a grayscale image heat map of
energies at each frequency at every time slice (see fig-
ure 2).

3.3. Dataset

The CHiME challenge [6] is a competition af-
filiated with a workshop at the IEEE International
Conference on Acoustics, Speech and Signal Pro-
cessing (ICASSP). We use the noisy speech recogni-
tion dataset from Track 1 of the 2013 CHiME chal-
lenge to train and evaluate an audio-denoising con-
volutional network. The CHiME dataset consists of
clean and corresponding artificially mixed noisy au-
dio tracks. The competition organizers claim that the
noise-mixing techniques used in data preparation are
highly representative of typical noise encountered in a
real application. The training data consists of 17,000
very short utterances that make use of a closed-class
and extremely limited vocabulary. The development
and test data consist of 600 similarly structured utter-
ances. Each test utterance is mixed with various levels

2



of background noise, so that one can measure the av-
erage performance of a system at various noise levels.

3.4. Denoising Convolutional Autoencoder

Figure 2. spectrograms of the clean audio track (top) and
the corresponding noisy audio track (bottom)

There is an important configuration difference be-
tween the autoencoders we explore and typical CNN’s
as used e.g. in image recognition. In particular, our
CNN’s do not use any pooling layers, as the purpose
is to reconstruct an output of the same dimensions as
the input. Pooling followed by up-sampling is also a
possibility, which we have not explored.

4. Experiment

4.1. Preprocessing

We train denoising convolutional autoencoders with
varying architectures using 100 audio tracks from the

CHiME challenge. Due to the varying lengths of the
audio tracks, we further randomly sample fixed-sized
windows from each audio track. Namely, for each
clean-noisy audio track pair, we perform the follow-
ing:

1. Apply fast Fourier transform on the audio tracks
to obtain corresponding spectrograms. For our
experiments, we apply FFT on 10 millisecond
time windows.

2. Randomly subsample corresponding fix-sized
windows from each spectrogram pair. For our ex-
periment, we collect windows that are 100 time
units and cover the entire frequency range. This
corresponds to 1 second of audio.

3. Because the spectrograms have a large dynamic
range (eg. from 10−3 to more than 1010), we ap-
ply element-wise log-transform.

4. Finally, we apply zero-mean unit-variance nor-
malization on the spectrograms.

In our experiments, the log transformation and data
normalization proved essential for convergence, due
to the nature of the regression loss and the extremely
large dynamic range of the input spectrograms.

4.2. Training

The result of the above preprocessing is taken to be
the input and output of the learning task. Namely, the
normalized spectrogram corresponding to a window in
the noisy audio track is given as input to the convo-
lutional autoencoder, and the normalized spectrogram
corresponding to the same window in the clean audio
track is given as target to the convolutional autoen-
coder.

In all cases, we train the models with stochastic
gradient descent and Nesterov momentum, which pro-
vided minor improvements over Adagrad. We use
L2 regularization with an extremely small weight of
0.00001. In general, underfitting is a far greater chal-
lenge for our task than overfitting.

We ran our experiments using the GPU image pro-
vided by Terminal.com and a NVIDIA GTX760. In
both cases, we implement our models and experiments
using Caffe [4].

3



5. Results

Example outputs of the autoencoder are compared
to spectrograms of the noisy and clean audio tracks
in Figure 3. It is unclear what to conclude from these
examples. One possibility is that the network results in
a sort of Gaussian blur over the noisy input. Another
is that something more sophisticated is happening, as
it does appear that meaningful structure from the clean
data is being preserved.

Figure 3. Denoised spectrograms from the autoencoder.
Each image is divided into three vertical segments. The left-
most segment is the spectrogram of the noisy audio track.
The middle segment is the spectrogram of the clean audio
track. The right-most segment is the output of the autoen-
coder.

5.1. Architectures vs. Activation

We compare against an extremely simple and easy
to compute baseline, namely a single-layer, 1x1 affine
convolutional network with no nonlinearities. The in-
tuition is that this can correct simple problems of scal-
ing in the noisy input, owing to the different means
and variances between the noisy and clean data. The
baseline mean squared reconstruction error is 2.55.
Due to time and resource constraints, we have not

yet computed end-to-end speech recognition experi-
ments, which would permit a variety of comparisons
with stronger baselines using speech recognition accu-
racy metrics.

The results across various architectures are shown
in Table 1 and Table 2. In order to preserve infor-
mation throughout the network, we do not use max-
pooling. Empirically, we found that the parameters re-
quired for fully-connected layers at the end of the net-
work are better utilised implementing additional con-
volutional layers. This matches our expectation, since
denoising is essentially a local operation which is in-
formed by nearby regions of the spectrogram.

Amongst the architectures we explored are cascad-
ing long filters, which were found to yield perfor-
mance improvements in image deblurring in [7]. For
our experiments, the intuition is that convolutional fil-
ters long in the time domain may be able to capture
patterns across time that may help in identifying noise.
However, in practice, we did not find noticeable per-
formance gains resulting from long convolutional fil-
ters.

Another architecture we explored was adding
network-in-network. This gave similar performance to
using standard large filters, and did not result in no-
ticeable performance gains.

In Table 1, we note that Tanh activation consistently
outperformed rectified linear units across all architec-
tures. Our hypothesis of why this may be happening is
that the severity of the regression loss may push rec-
tified linear units to the zero-gradient region, and the
autoencoder cannot recover from the dead ReLU units.
Whereas in classification tasks, activation sparsity may
be desirable, in autoencoding, it may cause undesir-
able information loss. For reference, the variance in
the clean spectrogram is 2.53, and the average mean
squared error between the noisy spectrogram and the
clean spectrogram after mean normalization is 2.40.

5.2. Depth vs. Filter Size

We also experimented with varying filter sizes
across layers of varying activation depth. In the event
that we use a shallow activation depth, we construct a
deeper network to leverage a similar number of param-
eters.

In Table 2, we show that larger filter sizes consis-
tently outperform smaller filter sizes for the autoen-

4



CNN Architecture Description ReLU Tanh
7x1x16 1x7x16 7x1x16 1x7x16 7x7x16 7x7x16 7x7x1 long skinny 2.10 1.90
1x7x16 7x1x16 1x7x16 7x1x16 7x7x16 7x7x16 7x7x1 long skinny 2.10 1.82
3x3x32 3x3x32 3x3x32 3x3x32 3x3x1 cascaded 3x3 2.02 1.80
7x7x16 7x7x16 7x7x16 7x7x8 7x7x16 7x7x16 7x7x16 7x7x1 8-layer 7x7 1.96 1.78
7x7x16 1x1x32 1x1x32 1x1x32 7x7x16 7x7x16 7x7x1 network-in-network 1.82 1.76
7x7x16 7x7x16 7x7x16 7x7x16 7x7x1 5-layer 7x7 1.82 1.74

Table 1. Mean squared reconstruction error of held-out development data, across varying architectures. The baseline recon-
struction error is 2.55.

Activation depth 3x3 5x5 7x7
128-1 2.10 1.96 1.88
48-48-1 2.00 1.84 1.74
24-24-24-24-1 1.90 1.76 1.74
16-16-16-16-16-16-1 1.98 1.88 1.74

Table 2. Mean squared reconstruction error across varying
depth of activation volume. For example, ”128-1” means
there is one layer of the given filter size with 128 output
channels, and one layer with 1 output channel. In all cases,
the final layer has no nonlinearity, and all nonfinal layers
have Tanh nonlinearity. The baseline reconstruction error is
2.55.

coding task, regardless of the depth of the network.
One reason why this may happen is that because we do
not use max-pooling, larger filter sizes offer a means
by which the network can collect observations from a
larger area, which is crucial for identifying patterns in
the spectrogram.

A second notable observation is that very deep net-
works seem not to be required to get the best recon-
struction performance.

Given the reconstructions we have achieved, some
which are shown in Figure 3, and numerical recon-
struction errors shown in Table 1 and 2, we believe
convolutional autoencoders deserve further investiga-
tion.

6. Future Work

One direct continuation of this work is to present
the reconstruction of the autoencoder to a down-stream
speech recognizer such as HTK [2]. Given our empir-
ical evidence that the reconstruction is closer to the
spectrogram of the clean audio track, we hypothesize
that a downstream speech recognizer such as HTK
may produce more accurate outputs (eg. in terms of

word error rate). In order to use the reconstructions
in HTK, we can extract MFCC features from the re-
construction through a deterministic procedure. The
MFCC features would then be used as input into HTK.
Alternatively, we could employ method 2 of Figure 1,
and use a network to generate MFCC’s directly.

7. Conclusion

In this project, we investigated the use of convolu-
tional autoencoders for audio denoising. In our exper-
iments, we found that large filter sizes and Tanh acti-
vations consistently achieved higher performance than
small filter sizes and linear rectifiers across varying ar-
chitectures. Finally, we presented empirical evidence
in the form of qualitative comparisons as well as quan-
titative reconstruction error between the output of the
autoencoder and spectrograms of clean audio tracks to
demonstrate that convolutional autoencoders are a po-
tentially promising approach for speech denoising.

References

[1] O. Abdel-Hamid, A. rahman Mohamed, H. Jiang, and
G. Penn. Applying convolutional neural networks con-
cepts to hybrid nn-hmm model for speech recognition.
IEEE International Conference on Acoustics, Speech
and Signal Processing 2012.

[2] Cambridge University. Htk speech recognition toolkit.

[3] A. Y. Hannun, A. L. Maas, D. Jurafsky, and A. Y. Ng.
First-pass large vocabulary continuous speech recogni-
tion using bi-directional recurrent dnns, 2014.

[4] Y. Jia, E. Shelhamer, J. Donahue, S. Karayev, J. Long,
R. Girshick, S. Guadarrama, and T. Darrell. Caffe:
Convolutional architecture for fast feature embedding.
arXiv preprint arXiv:1408.5093, 2014.

[5] S. Renals and P. Swietojanski. Neural networks for
distant speech recognition. 2014 4th Joint Workshop

5



on Hands-free Speech Communication and Microphone
Arrays (HSCMA), IEEE 2014, 2014.

[6] E. Vincent, J. Barker, S. Watanabe, J. L. Roux, and
F. Nesta. The second CHiME speech separation and
recognition challenge: An overview of challenge sys-
tems and outcomes. IEEE International Conference on
Acoustics, Speech and Signal Processing, 2013.

[7] L. Xu, J. S. Ren, C. Liu, and J. Jia. Deep convolutional
neural network for image deconvolution. Advances in
Neural Information Processing Systems, 2014, 2014.

6


