
 

225 

 
Abstract 

In this project we propose a way to extract useful map 
features from satellite images using neural networks. We 
first train a classifier network to do single-pixel labeling 
and then transfer the learned weights into a fully 
convolutional network that outputs a segmented map of 
the input image. In addition, we show that by adding the 
class Building we improve performance on other, similar 
looking inputs. 

1. Introduction 
Satellite images are the main source of information for 
modern maps, and yet they still need to be manually 
augmented and corrected to extract desired features like 
roads and buildings. One reason for human involvement is 
the inherent “noise” – different image quality as well as 
light conditions, coloring and occlusion. The other is 
ambiguity – useful map features are often abstract and 
hard to define in image-processing terms. Even roads can 
differ significantly - an interstate highway has very little in 
common with a local driveway in a suburb.  
 In this project we aim to automatically extract and label 
useful features from raw satellite images, akin to 
transforming “Google Earth” images into “Google Maps” 
maps. We treat this as a segmentation problem, assuming 
that each pixel on the satellite image belongs to one of 
four possible classes: Road, Water, Building and 
Background, where Background is a catch-all default 
class. In order to design a segmentation network, we first 
train a classifier network that only classifies a single pixel 
into one of the above labels.  

1.1. Related Work 

Methods of using neural networks to extract geographic 
features were shown in [1][2], though these works focused 
exclusively on locating roads and did not take advantage 
of classifying networks. Conversely, in [4] pre-trained 
classifying networks were modified for image 
segmentation, associating parts of the image with 
ImageNet classes. This work also encountered the problem 
of resolution reduction due to subsampling and described 
several solutions. 

2. Data  

Data was obtained using the Google Maps API, which 
provides acces to satellite images as well as color-coded 
maps. Since the standard map format is overly-rich in 
color and features, several “Style” flags were invoked to 
present only the four required classes in clear color  
(Figure 1) . The images are all from the greater San 
Francisco area, and are comprised mostly of urban 
localities. 
The original Sattelite images, of size 640x640, are divided 
into 64x64 patches, each corresponding to a map area of 
roughly 20m x 20m. Each patch has a label, which is just 
the correct class of its central pixel. The correct class is 
determind according the color of the corresponding pixel 
in the map image of the same area. Each 64 x 64 pixel 
patch was fed as trainig data to the classification network. 
Overall, 200K images are used as trining set, and 20K are 
divided equally between the validaiton and test sets. We 
made sure that each class appeared with roughly the same 
probability in the training data. 
 

Figure 1: A Satellite image and the corresponding map, as obtained from 
the Google API. Each of the 4 classes is represented with a different 
color. 
 

3. Technical Approach 

Our technical approach is similar to [4]: First, we train the 
Classification Network. This is a standard network that 
takes in a 64 x 64 patch of satellite image and trains to 
classify its central pixel. Then, we transfer the weights to 
the Segmentation Network: a fully convolutional network 
that acts on a larger satellite image and produces a 
segmentation map. Finally, we apply some post-
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processing to create a full size 640 x 640 segmentation 
map. 
  Note that our initial approach, described in the Project 
Milestone, treated this as a denoising problem, similarly to 
[3]. The network was trained to map each pixel from RGB 
to “correct” RGB, where the unmodified Google Maps 
map was treated as the ground truth and the satellite image 
as the noisy version. The RGB-to-RGB transformation 
that the network learned tended heavily towards the mean 
of the image, and could not extract useful map features. 
This approach was not pursued further and will not be 
discussed in this report. 

3.1. Classification network 

Our final Classification network is comprised of 5 
Convolutional layers and 2 Fully Connected layers. 
Dropout with probability 0.5 is applied to the last Conv 
layer and the first FC layer. There are no pooling layers in 
the network, as these complicate fine-tuning the final 
segmentation network. This limits the maximum depth of 
the network and slows training, but allows for higher 
resolution in the resulting Segmentation map. It also limits 
the receptive field of each layer, but testing has show that 
this doesn’t affect performance. 
 
3.2. Segmentation Network 
Having trained the Classification Network on 64 x 64 
patches, we now transfer the learned weights to the 
segmentation network in the following manner (Figure 2) : 

a. Convolutional layers remain unchanged.  
b. Fully Connected layers are replaced with 
Convolutional layers. The first new Conv layer has a 
receptive field of the same size as that of the 
analogous FC layer. The next layer has a receptive 
field of spatial size 1. Depth of the layers is 
unchanged. 

The Segmentation network takes satellite image patches of 
size 160 x 160 and produces a 160 x 160 x 4 probability 
map, where each pixel is assigned a softmax “probability” 
to belong to each of the 4 classes. 
 
3.3. Segmentation and Post Processing 
The entire image segmentation pipeline is as follows: 640 
x 640 satellite image is divided into overlapping patched 
of 160 x 160. Each patch is fed through the Segmentation 
Network, producing a per-pixel softmax mapping. The 
overlapping segmentations are accumulated back into a 
640 x 640 x 4 probability mapping, and the argmax class 
of each pixel is taken as the prediction. The resulting 
image is passed through a median filter of size 
9 x 9 to remove some noise and irregularities.  

 

 
Figure 2: The Classification Network (Top) and the Segmentation 
Network (Bottom). Note that the two fully connected layers have been 
replaced with convolution layers.  
 
4. Experiment 
4.1. Training the Classification Network 
In our initial effort to construct an efficient classifying 
network, we first used only three classes: Background, 
Road, and Water. Buildings were labeled as Background. 
This led to a relatively high error rate of 26%, as can be 
seen in Table 1 (Error rate is calculated as unweighted 
average over all classes, meaning – the error rate if pixels 
of all classes appeared with the same frequency. If we 
were to use the weighted average, our classifier would be 
heavily biased towards Background). 
 

Prediction 
True Label 

Background Road Water 

Background 70% 28% 2% 
Road 32% 65% 3% 
Water 5% 2% 93% 

Table 1: Performance of a 3-class classifier  
 
 
The most obvious source of error in this classifier is the 
confusion between Road and Background. This can be 
attributed in large part to buildings – flat gray surfaces that 
resemble roads but are labeled as background (Figure 3). 
 

 
Figure 3: roof (Background) classified as Road 
 
 
To tackle this problem, we added Building as a possible 
label, separate from Background. After training the 
classification network for ~40K iterations (of 50 batches 
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each), we achieved an error of 20%. Improving 
classification of both Road and Water, albeit slightly 
degrading the classification of Background. 
 

Prediction 
True Label 

Background Road Water Building 

Background 63% 18% 1% 18% 
Road 12% 78% 0% 10% 
Water 1% 0.5% 98% 0.5% 
Building 8% 11% 0% 81% 
Table 2: Confusion matrix for final Classification Net  
 
Further testing has been done with larger filter sizes in the 
Conv layers, but it did not improve performance. 
 
4.2. Transferring Weights to Segmentation Network 
Our next step was to transfer the weights to a 
segmentation network, as outlined in 3.2. Having run it on 
full-sized satellite images and applied a median filter, we 
obtain the results shown in Figure 4: 
 

 
Figure 4: Left: Original satellite images. Center: Segmentation results 
showing the 4 classes: Background (gray), Road (red), Water (green) and 
Building (blue) / Right: Segmentation overlaid on image. 
 
We see that most useful features are represented in the 
segmented image, although some are deformed. It’s also 
worth noting that occluded or shaded areas are still 
correctly classified: In the first image, a horizontal road is 
mostly hidden by trees and shades, but still present in the 
output. In the third image, a tree casts a dark shadow over 
the lake, but the area in the shadow is still correctly 
classified. 
Still, the post-processing leaves a lot to be desired. The 
median filter closes small gaps and smoothens edges, but 
it does not “encourage” straight lines or continuous 

shapes, and it distorts objects that are naturally angular, 
like buildings. 
 
4.3. Alternative approach 
In addition to the tests described above, we also tried to 
train a classification network by fine-tuning AlexNet. We 
used the first 5 layers of Alexnet (4 Conv, one FC), and 
added a final FC layers that maps to the 4 classes.  
This fine-tuned net achieved better single-pixel 
classification performance (15% error), but could not be 
easily transformed into a segmentation network. The 
reason is that each pooling layer subsamples its input, 
which makes the output have a much lower resolution than 
the input. Assuming 2-pooling, the output would have 
only 4-N as many pixels as the input. A few solutions were 
explored in [4], with the simplest one being the Shift-and-
Stitch, in which up to 4N copies of the input are produces 
using shift-by-one, and their results are then interleaved.  
In our case, this translates to running each 640 x 640 input 
through the network 256 Times, with proved impractical 
given our time and memory constraints. Instead, we 
attempt to use shift-by-4 and run in only 16 times through 
the network, using bilinear interpolation to stretch the 
results into the desired resolution. However, this gives 
unsatisfactory results, as can be seen in Figure 5: 
 

 
Figure 5: Left: original image. Center: output of Segmentation net 
naively constructed from Alexnet-based Classification net. Right: a 
partial Segmentation net that uses bilinear interpolation. 
 
5. Conclusion 
In this project we’ve demonstrated that Convolutional 
Networks achieve high performance on classifying 
geographic images. By adding the class Building, we’ve 
actually improved performance on all other classes, by 
making the default Background class better defined. 
We then used the weights we learned in the classification 
task for satellite image segmentation, without requiring 
any further training, and with very basic post-processing 
on the output. This was made possible by the fact that we 
didn’t use pooling after the Conv layers. 
However, one weakness of this approach is that given the 
outputs of the one-before-last layer, all pixel class 
predictions are independent. In other words, we fail to 
incorporate our knowledge about typical pixel distribution, 
like the fact that roads are generally elongated and 
maintain a constant width. In [4] this is solved by training 
another neural network. We only use the basic Median 
filter. 
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