

225

Abstract

In this project we propose a way to extract useful map
features from satellite images using neural networks. We
first train a classifier network to do single-pixel labeling
and then transfer the learned weights into a fully
convolutional network that outputs a segmented map of
the input image. In addition, we show that by adding the
class Building we improve performance on other, similar
looking inputs.

1. Introduction
Satellite images are the main source of information for
modern maps, and yet they still need to be manually
augmented and corrected to extract desired features like
roads and buildings. One reason for human involvement is
the inherent “noise” – different image quality as well as
light conditions, coloring and occlusion. The other is
ambiguity – useful map features are often abstract and
hard to define in image-processing terms. Even roads can
differ significantly - an interstate highway has very little in
common with a local driveway in a suburb.
 In this project we aim to automatically extract and label
useful features from raw satellite images, akin to
transforming “Google Earth” images into “Google Maps”
maps. We treat this as a segmentation problem, assuming
that each pixel on the satellite image belongs to one of
four possible classes: Road, Water, Building and
Background, where Background is a catch-all default
class. In order to design a segmentation network, we first
train a classifier network that only classifies a single pixel
into one of the above labels.

1.1. Related Work

Methods of using neural networks to extract geographic
features were shown in [1][2], though these works focused
exclusively on locating roads and did not take advantage
of classifying networks. Conversely, in [4] pre-trained
classifying networks were modified for image
segmentation, associating parts of the image with
ImageNet classes. This work also encountered the problem
of resolution reduction due to subsampling and described
several solutions.

2. Data

Data was obtained using the Google Maps API, which
provides acces to satellite images as well as color-coded
maps. Since the standard map format is overly-rich in
color and features, several “Style” flags were invoked to
present only the four required classes in clear color
(Figure 1) . The images are all from the greater San
Francisco area, and are comprised mostly of urban
localities.
The original Sattelite images, of size 640x640, are divided
into 64x64 patches, each corresponding to a map area of
roughly 20m x 20m. Each patch has a label, which is just
the correct class of its central pixel. The correct class is
determind according the color of the corresponding pixel
in the map image of the same area. Each 64 x 64 pixel
patch was fed as trainig data to the classification network.
Overall, 200K images are used as trining set, and 20K are
divided equally between the validaiton and test sets. We
made sure that each class appeared with roughly the same
probability in the training data.

Figure 1: A Satellite image and the corresponding map, as obtained from
the Google API. Each of the 4 classes is represented with a different
color.

3. Technical Approach

Our technical approach is similar to [4]: First, we train the
Classification Network. This is a standard network that
takes in a 64 x 64 patch of satellite image and trains to
classify its central pixel. Then, we transfer the weights to
the Segmentation Network: a fully convolutional network
that acts on a larger satellite image and produces a
segmentation map. Finally, we apply some post-

Milestone: Extracting Map Features from Satellite Images

Igor Berman

EE PhD, Stanford
igorber@stanford.edu

226

processing to create a full size 640 x 640 segmentation
map.
 Note that our initial approach, described in the Project
Milestone, treated this as a denoising problem, similarly to
[3]. The network was trained to map each pixel from RGB
to “correct” RGB, where the unmodified Google Maps
map was treated as the ground truth and the satellite image
as the noisy version. The RGB-to-RGB transformation
that the network learned tended heavily towards the mean
of the image, and could not extract useful map features.
This approach was not pursued further and will not be
discussed in this report.

3.1. Classification network

Our final Classification network is comprised of 5
Convolutional layers and 2 Fully Connected layers.
Dropout with probability 0.5 is applied to the last Conv
layer and the first FC layer. There are no pooling layers in
the network, as these complicate fine-tuning the final
segmentation network. This limits the maximum depth of
the network and slows training, but allows for higher
resolution in the resulting Segmentation map. It also limits
the receptive field of each layer, but testing has show that
this doesn’t affect performance.

3.2. Segmentation Network
Having trained the Classification Network on 64 x 64
patches, we now transfer the learned weights to the
segmentation network in the following manner (Figure 2) :

a. Convolutional layers remain unchanged.
b. Fully Connected layers are replaced with
Convolutional layers. The first new Conv layer has a
receptive field of the same size as that of the
analogous FC layer. The next layer has a receptive
field of spatial size 1. Depth of the layers is
unchanged.

The Segmentation network takes satellite image patches of
size 160 x 160 and produces a 160 x 160 x 4 probability
map, where each pixel is assigned a softmax “probability”
to belong to each of the 4 classes.

3.3. Segmentation and Post Processing
The entire image segmentation pipeline is as follows: 640
x 640 satellite image is divided into overlapping patched
of 160 x 160. Each patch is fed through the Segmentation
Network, producing a per-pixel softmax mapping. The
overlapping segmentations are accumulated back into a
640 x 640 x 4 probability mapping, and the argmax class
of each pixel is taken as the prediction. The resulting
image is passed through a median filter of size
9 x 9 to remove some noise and irregularities.

Figure 2: The Classification Network (Top) and the Segmentation
Network (Bottom). Note that the two fully connected layers have been
replaced with convolution layers.

4. Experiment
4.1. Training the Classification Network
In our initial effort to construct an efficient classifying
network, we first used only three classes: Background,
Road, and Water. Buildings were labeled as Background.
This led to a relatively high error rate of 26%, as can be
seen in Table 1 (Error rate is calculated as unweighted
average over all classes, meaning – the error rate if pixels
of all classes appeared with the same frequency. If we
were to use the weighted average, our classifier would be
heavily biased towards Background).

Prediction
True Label

Background Road Water

Background 70% 28% 2%
Road 32% 65% 3%
Water 5% 2% 93%

Table 1: Performance of a 3-class classifier

The most obvious source of error in this classifier is the
confusion between Road and Background. This can be
attributed in large part to buildings – flat gray surfaces that
resemble roads but are labeled as background (Figure 3).

Figure 3: roof (Background) classified as Road

To tackle this problem, we added Building as a possible
label, separate from Background. After training the
classification network for ~40K iterations (of 50 batches

227

each), we achieved an error of 20%. Improving
classification of both Road and Water, albeit slightly
degrading the classification of Background.

Prediction
True Label

Background Road Water Building

Background 63% 18% 1% 18%
Road 12% 78% 0% 10%
Water 1% 0.5% 98% 0.5%
Building 8% 11% 0% 81%
Table 2: Confusion matrix for final Classification Net

Further testing has been done with larger filter sizes in the
Conv layers, but it did not improve performance.

4.2. Transferring Weights to Segmentation Network
Our next step was to transfer the weights to a
segmentation network, as outlined in 3.2. Having run it on
full-sized satellite images and applied a median filter, we
obtain the results shown in Figure 4:

Figure 4: Left: Original satellite images. Center: Segmentation results
showing the 4 classes: Background (gray), Road (red), Water (green) and
Building (blue) / Right: Segmentation overlaid on image.

We see that most useful features are represented in the
segmented image, although some are deformed. It’s also
worth noting that occluded or shaded areas are still
correctly classified: In the first image, a horizontal road is
mostly hidden by trees and shades, but still present in the
output. In the third image, a tree casts a dark shadow over
the lake, but the area in the shadow is still correctly
classified.
Still, the post-processing leaves a lot to be desired. The
median filter closes small gaps and smoothens edges, but
it does not “encourage” straight lines or continuous

shapes, and it distorts objects that are naturally angular,
like buildings.

4.3. Alternative approach
In addition to the tests described above, we also tried to
train a classification network by fine-tuning AlexNet. We
used the first 5 layers of Alexnet (4 Conv, one FC), and
added a final FC layers that maps to the 4 classes.
This fine-tuned net achieved better single-pixel
classification performance (15% error), but could not be
easily transformed into a segmentation network. The
reason is that each pooling layer subsamples its input,
which makes the output have a much lower resolution than
the input. Assuming 2-pooling, the output would have
only 4-N as many pixels as the input. A few solutions were
explored in [4], with the simplest one being the Shift-and-
Stitch, in which up to 4N copies of the input are produces
using shift-by-one, and their results are then interleaved.
In our case, this translates to running each 640 x 640 input
through the network 256 Times, with proved impractical
given our time and memory constraints. Instead, we
attempt to use shift-by-4 and run in only 16 times through
the network, using bilinear interpolation to stretch the
results into the desired resolution. However, this gives
unsatisfactory results, as can be seen in Figure 5:

Figure 5: Left: original image. Center: output of Segmentation net
naively constructed from Alexnet-based Classification net. Right: a
partial Segmentation net that uses bilinear interpolation.

5. Conclusion
In this project we’ve demonstrated that Convolutional
Networks achieve high performance on classifying
geographic images. By adding the class Building, we’ve
actually improved performance on all other classes, by
making the default Background class better defined.
We then used the weights we learned in the classification
task for satellite image segmentation, without requiring
any further training, and with very basic post-processing
on the output. This was made possible by the fact that we
didn’t use pooling after the Conv layers.
However, one weakness of this approach is that given the
outputs of the one-before-last layer, all pixel class
predictions are independent. In other words, we fail to
incorporate our knowledge about typical pixel distribution,
like the fact that roads are generally elongated and
maintain a constant width. In [4] this is solved by training
another neural network. We only use the basic Median
filter.

228

References
[1] Jain, Viren, and Sebastian Seung. "Natural image
denoising with convolutional networks." Advances in
Neural Information Processing Systems. 2009
[2] Mnih, Volodymyr, and Geoffrey E. Hinton. "Learning to
detect roads in high-resolution aerial images." Computer
Vision–ECCV 2010. Springer Berlin Heidelberg, 2010.
210-223.
[3] Mnih, Volodymyr, and Geoffrey E. Hinton. "Learning to
label aerial images from noisy data." Proceedings of the
29th International Conference on Machine Learning
(ICML-12). 2012.
 [4] Long, Jonathan, Evan Shelhamer, and Trevor Darrell.
"Fully convolutional networks for semantic segmentation."
arXiv preprint arXiv:1411.4038 (2014).

