
1

1. ABSTRACT

We designed multiple Convolutional Neural
Networks (CNNs) to enter a competition on
Kaggle.com for the National Data Science Bowl.
More concretely, we built a system that
automates image identification for plankton and
other marine organisms/entities. Using a training
dataset of 30,000 labeled plankton images, we
attempted to classify a test dataset of 130,400
images into one of the 121 classes. We analyzed
and interpreted the success of our CNNs and
implemented several different techniques
including transfer learning, data augmentation,
and ensembles in an effort to improve results.
Transfer learning from two separate models,
AlexNet trained on ImageNet and LeNet trained
on MNIST, were examined, with AlexNet’s
deeper architecture and larger original dataset
proving more beneficial for the task. Data
augmentation, including constructing new
images derived from random rotations of each
training image, supplemented the existing
training set and lowered loss. After introducing a
larger training dataset, reducing dropout and
regularization helped add expressive power to a
network previously underfitting. Finally,
building ensembles of multiple different models
provided a final boost by reducing variance. In
sum, our models were able to achieve a final
multiclass log-loss of 1.1946 on the Kaggle.com
submission leaderboards.

2. INTRODUCTION

The purpose of this investigation was to tackle
the problem of Plankton Classification as
described in the National Data Science Bowl
competition on Kaggle.com. More concretely,

the challenge was to build a system that
automated image identification for marine
organisms/entities. This final system could
become extremely useful for monitoring and
measuring plankton populations, which are an
ideal measure of the health of the world’s
ecosystems and oceans.

Typically, there are many technical challenges
associated with computer vision classification,
especially in an area as challenging as ocean
imagery. Some of these challenges are the sheer
quantity of species, the fact that all entities are
oriented in 3D space, the fact that the ocean is
full of detritus and fecal pellets, the amount of
noise present in some images, and the presence
of unidentifiable species, and therefore the
“unknown” classes.

In this paper, we examined the role of CNNs for
plankton classification and implemented several
techniques including transfer learning, data
augmentation, and ensembles in an effort to
improve our efforts. The reasoning,
implementation, and results of these efforts are
discussed below.

3. BACKGROUND

The CNNs used in this investigation build on
two different models developed previously, in
particular: AlexNet trained on the ImageNet
dataset and LeNet trained on the MNIST dataset.
According to ImageNet Classification with Deep
Convolutional Neural Networks (2012), AlexNet
is an eight layer CNN, of which five are
convolutional and three are fully-connected,
trained on a dataset of over 15 million high-
resolution images belonging to approximately
22,000 classes. According to Gradient-Based

Alex Zamoshchin (alexzam), Jonathan Gold (johngold)

Convolutional Neural Networks for Plankton Classification:

Transfer Learning, Data Augmentation, and Ensemble Models

2

Learning Applied to Document Recognition
(1998), the version of LeNet we used is a four
layer CNN, of which two are convolution and
two are fully-connected, trained on a dataset of
60,000 training examples. Applying transfer
learning from these two models to the task of
plankton classification was a major component
of this investigation.

Additionally, an examination of the state-of-the-
art in plankton classification gave us a useful
metric on which to judge results. In Automatic
plankton image recognition with co-occurrence
matrices and Support Vector Machine (2005),
Hu and David describe an acceptable accuracy
of 67-‐83% for the task of plankton
classification. Since then, this range has stuck
and was one of the metrics to which we
compared our accuracy results.

4. DATASET

The training dataset consisted of 30,000 labeled
examples of plankton images, used to classify a
held-out test dataset of 130,400 images into one
of 121 classes. More concretely, each image was
to be classified into one of 121 plankton species,
including several classes for unknown entities
and artifacts.

5. PREPROCESSING AND PRELIMARNY
RESULTS

After preliminary inspection of the data, we
counted the number of classes and the number of
training examples per class. A histogram of the
number of examples each class contained is
displayed below:

Fig 1: Histogram of class sizes

Next, we performed a number of initial
preprocessing steps. The images were of
different sizes, so the first step was to resize
them all to the same size. We chose to resize
images to either 256x256 or 48x48 pixels,
experimenting with the trade-off between data
loss and computation time. Next, we inspected
the mean images of a few different classes, and
two of the more interesting ones are displayed
below:

Fig 2: Mean image of class ‘acantharia protist halo’

3

Fig 3: Mean image of class ‘copepod calanoid frilly antennae’

The first class’s mean image contained a faint
ring around the center and the second class’s
mean image contained lines streaking from the
middle blob, both of which were already
indicative of the types of plankton images in
these classes. In addition, we inspected the mean
image itself, which can be seen below:

Fig 4: Mean image of full dataset

The full dataset mean image contained a large
dark blob in the middle, which was to be
expected since most of the plankton were
located in the center.

6. EVALUATION

The evaluation method by which we evaluated
our results was multiclass log-loss. Meaning,

given a list of predicted probabilities for each
image, the final loss was determined as:

𝑙𝑜𝑔𝑙𝑜𝑠𝑠 = −
1
𝑁 Σ!!!

! Σ!!!! 𝑦!" log 𝑝!"

We compared our results using this evaluation
metric to a baseline of the uniform probability
distribution across all classes, resulting in a log-
loss of 4.795791, as well as to other results in
the leaderboard.

7. TECHNICAL APPROACH AND
EXPERIMENTS

After preprocessing, the technical approach
consisted of several stages: transfer learning
from various pre-trained architectures, data
augmentation, hyper-parameter tuning of
dropout and learning parameters, and ensemble
techniques, all in an effort to decrease our loss
on the test dataset.

7.1. Transfer Learning from AlexNet on the
ImageNet Dataset

Our first approach consisted of using an
identical architecture as AlexNet and fine-tuning
from the weights trained on ImageNet. The
motivation behind such an approach was that
insight gained from AlexNet on the ImageNet
dataset, especially the accumulated knowledge
on shapes, could be beneficial to training on our
dataset. Although weights were initialized from
AlexNet, the final fully-connected layer was not
taken and instead replaced with a fully-
connected layer of size 121, to predict plankton
classes. Since our dataset was not extremely
similar to the original ImageNet data, none of
the weights were held constant and instead we
continued training all weights using significantly
reduced learning rates. One problem with this
approach was that ImageNet was a dataset of
color images, and therefore contained data input
dimensions different from those of the plankton
images, which were in grayscale. Moreover
although transfer learning in general is a good
option, knowledge learned from the RGB dataset

4

likely contained representations of color that
were not useful for our task. Nevertheless, we
decided transfer learning from ImageNet was
still beneficial, not only because all accumulated
knowledge of lines and shapes was still
applicable, but also because ImageNet itself
contained many grayscale images. Two different
approaches were considered for tackling the
challenge of varying input dimensions. Our
initial approach consisted of treating our images
as grayscale and cutting of the first
convolutional layer of AlexNet, replacing it with
our own so that it was compatible with the
dimensionality of grayscale images. Although
this approach seemed practical at first, the loss
of trained weights early on in the network lost
much of the insight that the network originally
contained. Hence, a more sensible approach was
to treat all images as colored images, effectively
duplicating the depth dimension three times into
RGB values. Such a technique allowed us to
continue to use AlexNet in its original form, and
provided the best results of the two methods. A
comparison is seen below:

Fig 5: Validation loss vs. epochs for AlexNet trained on grayscale or

colored images

From the graph it is evident that using the first
layer's trained weights was beneficial not only
for the initial loss, but also for the eventual
convergence loss. For this reason, we performed
transfer learning from the unmodified AlexNet,
barring the deepest layer, and continued to build
on the performance of this model.

7.2. Transfer Learning from LeNet on the
MNIST Dataset

Another approach was to perform transfer
learning from a network trained on the MNIST
dataset. The intuition behind such an approach
was simple: not only was this dataset in
grayscale, reducing the differences between our
dataset and the original dataset, but also many
lines and curved shapes present in digits were
also evident in plankton. Hence, perhaps the
insight gained in differentiating different digits
could be extended to the classification of
plankton. Similarly to as when fine-tuning from
AlexNet, none of the weights were held constant
and instead a reduced learning rate was used.
This decision was made because of the number
of differences that still existed between our
dataset and MNIST. Moreover, since LeNet was
relatively shallow, at least relative to AlexNet
discussed above, we also tried extending the
network by adding several large fully-connected
layers at the end of the network. This still
allowed for transfer learning but also increased
the depth of LeNet. This change also agreed
with our intuition that recognizing straight and
curved lines, an ability usually captured by early
layers in a network, could be built-upon in
deeper layers to understand more complicated
plankton shapes.

After implementing these experiments, it was
deemed that, barring a significant investment in
hyper-parameter tuning, a substantial
improvement would not be achieved via transfer
learning from LeNet. Even at various learning
rates, the model was not able to achieve training
and validations losses similar to those achieved
by AlexNet, and seemed stuck at a multiclass
log-loss of approximately 4.5. The reason for
this was hypothesized to be the extremely
shallow nature of the network, even after
addition of the addition of more fully-connected
layers.

5

7.3. Data Augmentation

The primary motivation behind data
augmentation was the relatively small set of
training images. With only approximately
30,000 examples of labeled plankton, the dataset
was very small relative to other image
classification datasets that have been trained on
in the past. Moreover, since we used a portion of
this training set for validation, effectively only
80%, or 24,000 examples were available for use
for training. A deep network like AlexNet,
without substantial regularization or dropout,
would likely overfit any such training set. In an
effort to bolster the number of training
examples, and hence reducing variance, we
implemented data augmentation in two stages:
preprocessing and in real-time.

Our most substantial data augmentation efforts
occurred in preprocessing, primarily due to the
limitations of Caffe. Since every image was an
instance of a marine organism floating in the
ocean, it likely could be considered from any
camera angle. Meaning for any plankton image,
any rotation of that image was a viable training
image for that class. In order to reduce errors
associated with plankton orientation, and to
bolster our training set, for each training image
we created twelve supplementary training
images using the following procedure: for each
15-degree increment between 0 and 180, a
random rotation within that range was taken and
an image was generated by rotating the original
image by that amount. Special care was taken to
extend images such that no part of the original
image was lost, and so the background remained
white. Rotations were only taken between 0 and
180 degrees because a random mirror flip was
performed in the real time data augmentation
stage, as discussed below.

The second state of data augmentation was in
real-time. During this stage, a number of
augmentations were implemented including a
random mirror flip of the image, and a random
crop. Two different random crops were used:

from a reshape size of 256x256 to 227x227 and
from a reshape size of 48x48 to 47x47, such that
the sizes of the resultant images match the
architectures of the networks. A random mirror
flip was implemented so that with a probability
50%, a flip of the image across the vertical axis
was taken instead of the original image itself.

Fig 6: Validation loss vs. iterations for training on standard and

augmented datasets. Note we plot number of iterations because the
datasets are of different sizes.

Hence, training on the augmented dataset was
able to achieve a lower final validation loss than
training on the original dataset.

7.4. Augmenting Test Images

The original submission script involved simply
submitting the predicting probabilities for each
test image, and the next attempt implemented to
improve performance was the averaging of
probabilities for the predictions of several
different augmentations for each test image.
Meaning, the new method averaged together the
predicted probabilities for a number of random
rotations of each test image, including the
original image itself. Such a technique was
implemented for no rotations, two rotations, and
ten rotations, displayed below:

 No rotations 2 rotations 10 rotations

Multiclass
log-loss 1.3322 1.54567 2.1809

Unfortunately this method did not show any
boost in performance, and in fact seemed to
significantly diminish results. It is not

6

immediately clear why no improvement was
seen, although many reasons could exist
including an improper implementation of the
strategy, or a strange property in the dataset.

7.5. Tuning Learning Methods

A number of different learning methods and
associated hyper-parameters were evaluated in
tuning our networks. The first hyper parameter
we tuned was the learning rate. The standard
model started with a learning rate of 0.001, but
we found that a slightly higher starting rate
caused a more rapid descent. From there we
tested the step-size in conjunction with the
learning rate decay parameter, which annealed
the learning rate after a certain number of
iterations. When starting from ImageNet trained
weights, it worked best to have a high learning
rate decay, causing the learning rate to decrease
rapidly. However, after multiple epochs the
learning rate was too small, so we would start
from the most recent snapshot and decrease the
learning rate decay, causing the learning rate to
again anneal slower.

One discovery we made was that different types
of gradient descent methods were able to
converge on final losses lower than that of
stochastic gradient descent. We experimented
with both Adagrad and Nesterov, for which the
results are plotted below.

Fig 7: Validation loss vs. epochs for different learning methods.

As you can see, Nesterov’s Accelerated Gradient
Descent worked the best for us. It was not
immediately clear why Nestrov’s method was

able to reach a final convergence loss lower than
those of other methods, but perhaps the
properties inherent in this method most
accurately match the descent curve of our model.

7.6. Tuning Regularization and Dropout

After evaluation of our results thus far,
examination of training and validation losses led
to the hypothesis that some of our existing
models were underfitting. This is evident in the
models discussed above: in many cases training
and validation losses are approximately equal.
Though not necessarily a negative sign, this
could be indicative of an underfitting network
that would benefit from more expressive power.
Since the network was already fairly deep, the
two primary strategies for improving an
underfitting network were to reduce dropout or
to reduce regularization via the weight decay
parameter in Caffe. In fact, preliminary analysis
of tuning the dropout parameters for all dropout
layers in the network showed that simply
decreasing these parameters could improve
results.

Fig 8: Validation accuracy vs. epochs for different dropout

parameters. Note we plot validation accuracy because the difference
is more prominent.

Implementation of these changes led to a loss
reduction of about 0.153.

7.7. Ensemble Methods

As a final step in optimizing our performance we
created ensemble models consisting of averages
of our previously submitted results. Meaning,

7

taking two lists of predicted probabilities, an
ensemble list of predicted probabilities was
constructed by averaging each probability from
all of the input models. As seen in previous
investigations, an ensemble of multiple models
is able to improve performance by reducing
variance, in effect hedging the bets made by the
model’s predictions. Such a technique provided
the last substantial improvements in our test
loss, and these results are displayed below:

 Model 1 Model 2 Model 3 Ensemble

Multiclass
log-loss 1.3512 1.3334 1.3163 1.1946

Hence, we created an ensemble model from
several networks initiated with AlexNet’s
weights trained on ImageNet, on augmented
training sets, with a dropout probability of 0.2,
and trained with Nestrov’s Accelerated Gradient
Descent. Clearly, the ensemble model was able
to outperform any one of the existing models
taken by themselves.

8. CONCLUSION

As discussed above, this investigation examined
various transfer learning, data augmentation, and
ensemble techniques. The ultimate CNN
selected was an implementation of AlexNet’s
original architecture with weight initialization
from weights trained on ImageNet. This deep
network, in combination with insight learned on
a data corpus of 15 million images, proved the
most successful strategy. Data augmentation,
including random rotation, mirroring, and
cropping, also proved beneficial to our results,
especially due to the small size of the original
train dataset. Finally, creating ensembles of our
various models provided another boost in
performance, either because of the sensitive
nature of our evaluation metric, multiclass log-
loss, or because of the high variance present in
our original models. In sum, our best model was
able to achieve an eventual train loss of 0.22,
validation loss of 0.61, and validation accuracy

of 77%. When submitting on Kaggle.com, we
were able to achieve a multiclass log-loss of
1.1946, placing us in the top 30% of
competition.

Among the contributions made in this paper, the
most notable was the surprising success of
transfer learning from ImageNet, a dataset
substantially different from ours involving only
marine organisms. Moreover, the necessity for
data augmentation when working with small
training datasets, and our work with ensemble
models, show the continued success of those
techniques. Finally, it was interesting to note
that almost all leaders in the Kaggle.com
competition were implementations of
Convolutional Neural Networks.

9. FUTURE WORK

Many further experiments could be implemented
to further improve our results. Ideas for future
work include further data augmentation, more
intelligent methods for generating test
predictions, and further hyper-parameter tuning.
Additional data augmentation could be done to
generate additional training examples via
scaling, zooming, or modifying the contrast of
the training images. Although averaging
predictions for random rotations did not prove
beneficial, a similar technique could be
implemented for different augmentations
including random cropping, mirror flips, or
contrast filtering. As always, further hyper-
parameter tuning would prove beneficial since,
despite the extensive nature of this investigation,
some hyper-parameters still remain only
coarsely-tuned.

10. NOTES

Use of Terminal.com was a major hindrance to
our efforts. In sum, around 5-6 hours were
wasted vying with other students for GPU
instances, and on one occasion an entire instance
containing computed weights and augmentations
was lost. We hope the teaching staff in

8

evaluating our results acknowledges this
difficulty.

11. REFERENCES

Alex, K., Stskever, I., & Hinton, G. (2012).
ImageNet Classification with Deep
Convolutional Neural Networks. Advances in
Neural Information Processing Systems 25,
1097-1105. Retrieved March 11, 2015, from
http://papers.nips.cc/paper/4824-imagenet-
classification-with-deep-convolutional-neural-
networks.pdf

Bubeck, S. (2013, April 1). Nesterov’s
Accelerated Gradient Descent. Retrieved March

17, 2015, from
https://blogs.princeton.edu/imabandit/2013/04/0
1/acceleratedgradientdescent

Hu, Q., & Davis, C. (n.d.). Automatic plankton
image recognition with co-occurrence matrices
and Support Vector Machine. Marine Ecology
Progress Series, 21-31.

Y. LeCun, L. Bottou, Y. Bengio and P. Haffner:
Gradient-Based Learning Applied to Document
Recognition, Proceedings of the IEEE,
86(11):2278-2324, November 1998

