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1. ABSTRACT 
  
We designed multiple Convolutional Neural 
Networks (CNNs) to enter a competition on 
Kaggle.com for the National Data Science Bowl. 
More concretely, we built a system that 
automates image identification for plankton and 
other marine organisms/entities. Using a training 
dataset of 30,000 labeled plankton images, we 
attempted to classify a test dataset of 130,400 
images into one of the 121 classes. We analyzed 
and interpreted the success of our CNNs and 
implemented several different techniques 
including transfer learning, data augmentation, 
and ensembles in an effort to improve results. 
Transfer learning from two separate models, 
AlexNet trained on ImageNet and LeNet trained 
on MNIST, were examined, with AlexNet’s 
deeper architecture and larger original dataset 
proving more beneficial for the task. Data 
augmentation, including constructing new 
images derived from random rotations of each 
training image, supplemented the existing 
training set and lowered loss. After introducing a 
larger training dataset, reducing dropout and 
regularization helped add expressive power to a 
network previously underfitting. Finally, 
building ensembles of multiple different models 
provided a final boost by reducing variance. In 
sum, our models were able to achieve a final 
multiclass log-loss of 1.1946 on the Kaggle.com 
submission leaderboards. 

2. INTRODUCTION 

The purpose of this investigation was to tackle 
the problem of Plankton Classification as 
described in the National Data Science Bowl 
competition on Kaggle.com. More concretely, 

the challenge was to build a system that 
automated image identification for marine 
organisms/entities. This final system could 
become extremely useful for monitoring and 
measuring plankton populations, which are an 
ideal measure of the health of the world’s 
ecosystems and oceans. 

Typically, there are many technical challenges 
associated with computer vision classification, 
especially in an area as challenging as ocean 
imagery. Some of these challenges are the sheer 
quantity of species, the fact that all entities are 
oriented in 3D space, the fact that the ocean is 
full of detritus and fecal pellets, the amount of 
noise present in some images, and the presence 
of unidentifiable species, and therefore the 
“unknown” classes.  

In this paper, we examined the role of CNNs for 
plankton classification and implemented several 
techniques including transfer learning, data 
augmentation, and ensembles in an effort to 
improve our efforts. The reasoning, 
implementation, and results of these efforts are 
discussed below. 

3. BACKGROUND 

The CNNs used in this investigation build on 
two different models developed previously, in 
particular: AlexNet trained on the ImageNet 
dataset and LeNet trained on the MNIST dataset. 
According to ImageNet Classification with Deep 
Convolutional Neural Networks (2012), AlexNet 
is an eight layer CNN, of which five are 
convolutional and three are fully-connected, 
trained on a dataset of over 15 million high-
resolution images belonging to approximately 
22,000 classes. According to Gradient-Based 
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Learning Applied to Document Recognition 
(1998), the version of LeNet we used is a four 
layer CNN, of which two are convolution and 
two are fully-connected, trained on a dataset of 
60,000 training examples. Applying transfer 
learning from these two models to the task of 
plankton classification was a major component 
of this investigation. 

Additionally, an examination of the state-of-the-
art in plankton classification gave us a useful 
metric on which to judge results. In Automatic 
plankton image recognition with co-occurrence 
matrices and Support Vector Machine (2005), 
Hu and David describe an acceptable accuracy 
of 67-‐83% for the task of plankton 
classification. Since then, this range has stuck 
and was one of the metrics to which we 
compared our accuracy results. 

4. DATASET 

The training dataset consisted of 30,000 labeled 
examples of plankton images, used to classify a 
held-out test dataset of 130,400 images into one 
of 121 classes. More concretely, each image was 
to be classified into one of 121 plankton species, 
including several classes for unknown entities 
and artifacts.  

5. PREPROCESSING AND PRELIMARNY 
RESULTS 

After preliminary inspection of the data, we 
counted the number of classes and the number of 
training examples per class. A histogram of the 
number of examples each class contained is 
displayed below: 

 
Fig 1: Histogram of class sizes 

Next, we performed a number of initial 
preprocessing steps. The images were of 
different sizes, so the first step was to resize 
them all to the same size. We chose to resize 
images to either 256x256 or 48x48 pixels, 
experimenting with the trade-off between data 
loss and computation time. Next, we inspected 
the mean images of a few different classes, and 
two of the more interesting ones are displayed 
below: 

 
Fig 2: Mean image of class ‘acantharia protist halo’ 
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Fig 3: Mean image of class ‘copepod calanoid frilly antennae’ 

The first class’s mean image contained a faint 
ring around the center and the second class’s 
mean image contained lines streaking from the 
middle blob, both of which were already 
indicative of the types of plankton images in 
these classes. In addition, we inspected the mean 
image itself, which can be seen below: 

 
Fig 4: Mean image of full dataset 

The full dataset mean image contained a large 
dark blob in the middle, which was to be 
expected since most of the plankton were 
located in the center. 

6. EVALUATION 

The evaluation method by which we evaluated 
our results was multiclass log-loss. Meaning, 

given a list of predicted probabilities for each 
image, the final loss was determined as: 

𝑙𝑜𝑔𝑙𝑜𝑠𝑠 = −
1
𝑁 Σ!!!

! Σ!!!! 𝑦!" log 𝑝!"  

We compared our results using this evaluation 
metric to a baseline of the uniform probability 
distribution across all classes, resulting in a log-
loss of 4.795791, as well as to other results in 
the leaderboard. 

7. TECHNICAL APPROACH AND 
EXPERIMENTS 

After preprocessing, the technical approach 
consisted of several stages: transfer learning 
from various pre-trained architectures, data 
augmentation, hyper-parameter tuning of 
dropout and learning parameters, and ensemble 
techniques, all in an effort to decrease our loss 
on the test dataset. 

7.1. Transfer Learning from AlexNet on the 
ImageNet Dataset 

Our first approach consisted of using an 
identical architecture as AlexNet and fine-tuning 
from the weights trained on ImageNet. The 
motivation behind such an approach was that 
insight gained from AlexNet on the ImageNet 
dataset, especially the accumulated knowledge 
on shapes, could be beneficial to training on our 
dataset. Although weights were initialized from 
AlexNet, the final fully-connected layer was not 
taken and instead replaced with a fully-
connected layer of size 121, to predict plankton 
classes. Since our dataset was not extremely 
similar to the original ImageNet data, none of 
the weights were held constant and instead we 
continued training all weights using significantly 
reduced learning rates. One problem with this 
approach was that ImageNet was a dataset of 
color images, and therefore contained data input 
dimensions different from those of the plankton 
images, which were in grayscale. Moreover 
although transfer learning in general is a good 
option, knowledge learned from the RGB dataset 
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likely contained representations of color that 
were not useful for our task. Nevertheless, we 
decided transfer learning from ImageNet was 
still beneficial, not only because all accumulated 
knowledge of lines and shapes was still 
applicable, but also because ImageNet itself 
contained many grayscale images. Two different 
approaches were considered for tackling the 
challenge of varying input dimensions. Our 
initial approach consisted of treating our images 
as grayscale and cutting of the first 
convolutional layer of AlexNet, replacing it with 
our own so that it was compatible with the 
dimensionality of grayscale images. Although 
this approach seemed practical at first, the loss 
of trained weights early on in the network lost 
much of the insight that the network originally 
contained. Hence, a more sensible approach was 
to treat all images as colored images, effectively 
duplicating the depth dimension three times into 
RGB values. Such a technique allowed us to 
continue to use AlexNet in its original form, and 
provided the best results of the two methods. A 
comparison is seen below:

 
Fig 5: Validation loss vs. epochs for AlexNet trained on grayscale or 

colored images 

From the graph it is evident that using the first 
layer's trained weights was beneficial not only 
for the initial loss, but also for the eventual 
convergence loss. For this reason, we performed 
transfer learning from the unmodified AlexNet, 
barring the deepest layer, and continued to build 
on the performance of this model. 

 

7.2. Transfer Learning from LeNet on the 
MNIST Dataset 

Another approach was to perform transfer 
learning from a network trained on the MNIST 
dataset. The intuition behind such an approach 
was simple: not only was this dataset in 
grayscale, reducing the differences between our 
dataset and the original dataset, but also many 
lines and curved shapes present in digits were 
also evident in plankton. Hence, perhaps the 
insight gained in differentiating different digits 
could be extended to the classification of 
plankton. Similarly to as when fine-tuning from 
AlexNet, none of the weights were held constant 
and instead a reduced learning rate was used. 
This decision was made because of the number 
of differences that still existed between our 
dataset and MNIST. Moreover, since LeNet was 
relatively shallow, at least relative to AlexNet 
discussed above, we also tried extending the 
network by adding several large fully-connected 
layers at the end of the network. This still 
allowed for transfer learning but also increased 
the depth of LeNet. This change also agreed 
with our intuition that recognizing straight and 
curved lines, an ability usually captured by early 
layers in a network, could be built-upon in 
deeper layers to understand more complicated 
plankton shapes. 

After implementing these experiments, it was 
deemed that, barring a significant investment in 
hyper-parameter tuning, a substantial 
improvement would not be achieved via transfer 
learning from LeNet. Even at various learning 
rates, the model was not able to achieve training 
and validations losses similar to those achieved 
by AlexNet, and seemed stuck at a multiclass 
log-loss of approximately 4.5. The reason for 
this was hypothesized to be the extremely 
shallow nature of the network, even after 
addition of the addition of more fully-connected 
layers. 
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7.3. Data Augmentation 

The primary motivation behind data 
augmentation was the relatively small set of 
training images. With only approximately 
30,000 examples of labeled plankton, the dataset 
was very small relative to other image 
classification datasets that have been trained on 
in the past. Moreover, since we used a portion of 
this training set for validation, effectively only 
80%, or 24,000 examples were available for use 
for training. A deep network like AlexNet, 
without substantial regularization or dropout, 
would likely overfit any such training set. In an 
effort to bolster the number of training 
examples, and hence reducing variance, we 
implemented data augmentation in two stages: 
preprocessing and in real-time. 

Our most substantial data augmentation efforts 
occurred in preprocessing, primarily due to the 
limitations of Caffe. Since every image was an 
instance of a marine organism floating in the 
ocean, it likely could be considered from any 
camera angle. Meaning for any plankton image, 
any rotation of that image was a viable training 
image for that class. In order to reduce errors 
associated with plankton orientation, and to 
bolster our training set, for each training image 
we created twelve supplementary training 
images using the following procedure: for each 
15-degree increment between 0 and 180, a 
random rotation within that range was taken and 
an image was generated by rotating the original 
image by that amount. Special care was taken to 
extend images such that no part of the original 
image was lost, and so the background remained 
white. Rotations were only taken between 0 and 
180 degrees because a random mirror flip was 
performed in the real time data augmentation 
stage, as discussed below. 

The second state of data augmentation was in 
real-time. During this stage, a number of 
augmentations were implemented including a 
random mirror flip of the image, and a random 
crop. Two different random crops were used: 

from a reshape size of 256x256 to 227x227 and 
from a reshape size of 48x48 to 47x47, such that 
the sizes of the resultant images match the 
architectures of the networks. A random mirror 
flip was implemented so that with a probability 
50%, a flip of the image across the vertical axis 
was taken instead of the original image itself. 

 
Fig 6: Validation loss vs. iterations for training on standard and 

augmented datasets. Note we plot number of iterations because the 
datasets are of different sizes. 

Hence, training on the augmented dataset was 
able to achieve a lower final validation loss than 
training on the original dataset.  

7.4. Augmenting Test Images 

The original submission script involved simply 
submitting the predicting probabilities for each 
test image, and the next attempt implemented to 
improve performance was the averaging of 
probabilities for the predictions of several 
different augmentations for each test image. 
Meaning, the new method averaged together the 
predicted probabilities for a number of random 
rotations of each test image, including the 
original image itself. Such a technique was 
implemented for no rotations, two rotations, and 
ten rotations, displayed below: 

 No rotations 2 rotations 10 rotations 

Multiclass 
log-loss 1.3322 1.54567 2.1809 

 
Unfortunately this method did not show any 
boost in performance, and in fact seemed to 
significantly diminish results. It is not 
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immediately clear why no improvement was 
seen, although many reasons could exist 
including an improper implementation of the 
strategy, or a strange property in the dataset. 

7.5. Tuning Learning Methods 

A number of different learning methods and 
associated hyper-parameters were evaluated in 
tuning our networks. The first hyper parameter 
we tuned was the learning rate. The standard 
model started with a learning rate of 0.001, but 
we found that a slightly higher starting rate 
caused a more rapid descent. From there we 
tested the step-size in conjunction with the 
learning rate decay parameter, which annealed 
the learning rate after a certain number of 
iterations. When starting from ImageNet trained 
weights, it worked best to have a high learning 
rate decay, causing the learning rate to decrease 
rapidly. However, after multiple epochs the 
learning rate was too small, so we would start 
from the most recent snapshot and decrease the 
learning rate decay, causing the learning rate to 
again anneal slower. 

One discovery we made was that different types 
of gradient descent methods were able to 
converge on final losses lower than that of 
stochastic gradient descent. We experimented 
with both Adagrad and Nesterov, for which the 
results are plotted below. 

 
Fig 7: Validation loss vs. epochs for different learning methods.  

As you can see, Nesterov’s Accelerated Gradient 
Descent worked the best for us. It was not 
immediately clear why Nestrov’s method was 

able to reach a final convergence loss lower than 
those of other methods, but perhaps the 
properties inherent in this method most 
accurately match the descent curve of our model. 

7.6. Tuning Regularization and Dropout 

After evaluation of our results thus far, 
examination of training and validation losses led 
to the hypothesis that some of our existing 
models were underfitting. This is evident in the 
models discussed above: in many cases training 
and validation losses are approximately equal. 
Though not necessarily a negative sign, this 
could be indicative of an underfitting network 
that would benefit from more expressive power. 
Since the network was already fairly deep, the 
two primary strategies for improving an 
underfitting network were to reduce dropout or 
to reduce regularization via the weight decay 
parameter in Caffe. In fact, preliminary analysis 
of tuning the dropout parameters for all dropout 
layers in the network showed that simply 
decreasing these parameters could improve 
results. 

 
Fig 8: Validation accuracy vs. epochs for different dropout 

parameters. Note we plot validation accuracy because the difference 
is more prominent. 

Implementation of these changes led to a loss 
reduction of about 0.153. 

7.7. Ensemble Methods 

As a final step in optimizing our performance we 
created ensemble models consisting of averages 
of our previously submitted results. Meaning, 
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taking two lists of predicted probabilities, an 
ensemble list of predicted probabilities was 
constructed by averaging each probability from 
all of the input models. As seen in previous 
investigations, an ensemble of multiple models 
is able to improve performance by reducing 
variance, in effect hedging the bets made by the 
model’s predictions. Such a technique provided 
the last substantial improvements in our test 
loss, and these results are displayed below: 

 Model 1 Model 2 Model 3 Ensemble 

Multiclass 
log-loss 1.3512 1.3334 1.3163 1.1946 

 
Hence, we created an ensemble model from 
several networks initiated with AlexNet’s 
weights trained on ImageNet, on augmented 
training sets, with a dropout probability of 0.2, 
and trained with Nestrov’s Accelerated Gradient 
Descent. Clearly, the ensemble model was able 
to outperform any one of the existing models 
taken by themselves. 

8. CONCLUSION 

As discussed above, this investigation examined 
various transfer learning, data augmentation, and 
ensemble techniques. The ultimate CNN 
selected was an implementation of AlexNet’s 
original architecture with weight initialization 
from weights trained on ImageNet. This deep 
network, in combination with insight learned on 
a data corpus of 15 million images, proved the 
most successful strategy. Data augmentation, 
including random rotation, mirroring, and 
cropping, also proved beneficial to our results, 
especially due to the small size of the original 
train dataset. Finally, creating ensembles of our 
various models provided another boost in 
performance, either because of the sensitive 
nature of our evaluation metric, multiclass log-
loss, or because of the high variance present in 
our original models. In sum, our best model was 
able to achieve an eventual train loss of 0.22, 
validation loss of 0.61, and validation accuracy 

of 77%. When submitting on Kaggle.com, we 
were able to achieve a multiclass log-loss of 
1.1946, placing us in the top 30% of 
competition. 

Among the contributions made in this paper, the 
most notable was the surprising success of 
transfer learning from ImageNet, a dataset 
substantially different from ours involving only 
marine organisms. Moreover, the necessity for 
data augmentation when working with small 
training datasets, and our work with ensemble 
models, show the continued success of those 
techniques. Finally, it was interesting to note 
that almost all leaders in the Kaggle.com 
competition were implementations of 
Convolutional Neural Networks. 

9. FUTURE WORK 

Many further experiments could be implemented 
to further improve our results. Ideas for future 
work include further data augmentation, more 
intelligent methods for generating test 
predictions, and further hyper-parameter tuning. 
Additional data augmentation could be done to 
generate additional training examples via 
scaling, zooming, or modifying the contrast of 
the training images. Although averaging 
predictions for random rotations did not prove 
beneficial, a similar technique could be 
implemented for different augmentations 
including random cropping, mirror flips, or 
contrast filtering. As always, further hyper-
parameter tuning would prove beneficial since, 
despite the extensive nature of this investigation, 
some hyper-parameters still remain only 
coarsely-tuned. 

10. NOTES 

Use of Terminal.com was a major hindrance to 
our efforts. In sum, around 5-6 hours were 
wasted vying with other students for GPU 
instances, and on one occasion an entire instance 
containing computed weights and augmentations 
was lost. We hope the teaching staff in 
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evaluating our results acknowledges this 
difficulty. 

11. REFERENCES 

Alex, K., Stskever, I., & Hinton, G. (2012). 
ImageNet Classification with Deep 
Convolutional Neural Networks. Advances in 
Neural Information Processing Systems 25, 
1097-1105. Retrieved March 11, 2015, from 
http://papers.nips.cc/paper/4824-imagenet-
classification-with-deep-convolutional-neural-
networks.pdf 

Bubeck, S. (2013, April 1). Nesterov’s 
Accelerated Gradient Descent. Retrieved March 

17, 2015, from 
https://blogs.princeton.edu/imabandit/2013/04/0
1/acceleratedgradientdescent 

Hu, Q., & Davis, C. (n.d.). Automatic plankton 
image recognition with co-occurrence matrices 
and Support Vector Machine. Marine Ecology 
Progress Series, 21-31. 

Y. LeCun, L. Bottou, Y. Bengio and P. Haffner: 
Gradient-Based Learning Applied to Document 
Recognition, Proceedings of the IEEE, 
86(11):2278-2324, November 1998

  


