
Privacy-Aware Image Classification

Alexandros Manolakos
Electrical Engineering Department

Stanford University
amanolak@stanford.edu

Nima Soltani
Electrical Engineering Department

Stanford University
nsoltani@stanford.edu

Abstract

Training neural networks is a computationally-intensive
task that is best suited for massively parallel machines like
GPUs or server farms, and as such users realistically would
have to give their data to the cloud for building the clas-
sifier. When giving this data away to be processed, it is at
risk of being taken by non-intended parties. In this work, we
propose modifying the data being sent, in this case images,
such that if it were intercepted, it would be difficult to re-
construct the original image. We propose multiple methods
for achieving this privacy strategy, and show the tradeoffs
encountered in these scenarios.

1. Introduction
Privacy is an important concern in society today, espe-

cially when data is voluntarily sent to the cloud for storage
or processing. There are plenty of news stories about data
being compromised such as the hacked celebrity iCloud ac-
counts, or the cyber attack on Anthem BlueCross, in which
patient health records were accessed. In many scenarios, it
is necessary to store personal information in the cloud to be
able to provide their respective services.

For this project, we consider a scenario where a user
submits a repository of his/her own images to the cloud
for training a neural network-based classifer. For example,
for the next big scientific breakthrough, neural networks
could be used to classify objects in experiments (a task that
would take many man-hours to complete manually), but a
lab would not like to have it leaked to competitors; or it
could be anyone who wants to build a neural network to
detect their own face in images, and as a result needs to
train on a vast dataset of their own images. As the training
process is a long one, these people have their information
trained on a neural network trainer in the cloud, and as a
result submit their images to the cloud. It goes without say-
ing, that in either of these example scenarios, if cloud ma-
chines are compromised, users would be legitimately con-
cerned about hackers distributing their private data.

In this project, we look at different ways in which the
user can take an active role in maintaining the privacy of
his/her data, and compare their respective performances.
We try to find ways of reducing the damages of this kind of
privacy leak by not uploading the raw data to the cloud, but
rather performing some pre-processing on it as a perturba-
tion and uploading that so the dataset would then be stored
on the cloud for training the neural networks. This way, if
a leak were to occur, it would be a much more arduous task
to recover the actual dataset. This will come at a cost of
additional complexity, and a decrease in the accuracy of the
resulting classifier. This is what we wish to explore in this
project.

2. Background

While the problem we propose has not been looked at, a
number of related problems have been. In [2], the premise is
similar, in that we want to train a neural network but jointly
across machines, and each one wants to keep its data private
from the other. As a result they calculate they only commu-
nicate their changes to the model parameters to one another
after each iteration. We are interested in the learning being
solely done on the cloud so as to fully offload the work, and
not require a network connection be established throughout
this lengthy process.

Our question is more similiar to [3], in which the trade-
off between accuracy and privacy is explored. They, like
us, implement local privacy, meaning that instead of giving
the learner the real samples Xi, perturbed samples Zi are
given instead. They assume a very generic framework and
establish bounds on mutual information between theXi and
Zi. This work captures much of the spirit of what we wish
to explore, but the loss functions they use are assumed to be
convex in the parameters of the model, typical of SVMs and
linear regression-type estimators. Unfortunately, that can-
not be assumed in our model, as we are dealing with neural
networks, which by the existence of blocks like ReLUs and
MaxPools, are non-linear and non-convex.

1



CR	   CRP	   CRP	   FC	   SM	  
32	   64	  64	   10	  

Figure 1. Basic neural network architecture used. CR is CONV-
RELU, CRP is CONV-RELU-POOL, FC is fully connected and
SM is a softmax classifier.

3. Approach

We use the CIFAR-10 dataset, as the images are small
enough for us to try a variety of privacy preserving tech-
niques in the time we have this quarter. Due to time con-
straints, our goals are not necessarily to find the best possi-
ble classifier given data, as it may take a long time. Instead
we plan to optimize over around ten epochs, and find the
best fitting models for the different strategies. We feel that
this would allow for a relatively fair comparison.

We use the Python code from Assignment 2 to build a
baseline classifier. The architecture we use is shown in Fig-
ure 1. Using this dataset we are able to get a classification
accuracy of 74%. We also trained a three layer network,
which had a CR-CRP-FC-SM architecture, but it obtained
a validation accuracy of 67%. As result, for the remain-
der of the paper we refer to the setup of as a baseline for
comparison.

We develop trade-off curves between privacy and classi-
fication accuracy. Enumerating privacy will depend on the
particular technique used to perturb the image. For exam-
ple, one simple technique is blurring, in which case the pri-
vacy metric is the radius of the blur - the wider the radius,
the more it blurs and the less recognizable the image be-
comes, which while is potentially good for privacy, is bad
for classification. We also look at scrambling the input im-
ages, and in particular scrambling within non-overlapping
sub-blocks within the image. As the size of these sub-
blocks increase, the more random the image will appear.

For this project we implement a few different techniques,
which all apply some sort of linear transformation to the
images. The approaches we try are:

3.1. Gaussian Blur Filter

First we try to apply a blurring filter, which is an intu-
itive privacy preserving transformation that is often used for
censoring images. In this strategy, we convolve the input
images with Gaussian blur filter of different sizes. Increas-
ing the size of the filter makes it more difficult to recog-
nize. The blur is implemented by OpenCV [1], and it is a
K×K filter, characterized by a Gaussian function centered

Figure 2. For block scrambling, we first divide the image into
blocks as pictured above, and then permute the pixels within the
block.

at µ = 1
2 (K − 1) with standard deviation

σ = 0.3

(
1

2
(K − 1)− 1

)
+ 0.8.

3.2. Random Filter

Our next approach generalizes the Gaussian blur with a
filter with random weights, sampled i.i.d. from a standard
Gaussian distribution. Whereas in Gaussian blurring, there
is a sense of down-sampling the image by low pass filtering,
in this case we apply a random filter which could low pass
filter, but could also high pass filter and bring out edges.

3.3. I.I.D. Random Filter

In the previous section we assumed that one filter is gen-
erated by sampling coefficient i.i.d. from a Guassian distri-
bution. Another approach is that for every picture, we use
a different filter, generated in a similar manner. This should
pick up much more higher level qualities about the image,
as the minute details will be lost through the different filters
applied to the image.c

3.4. Block Scrambling

Another method that is commonly used to preserve pri-
vacy is to scramble images. By scrambling, we specifi-
cally mean spatial rearrangement of pixels within the image.
In order to be able to build convolutional neural networks,
however, there needs to be some spatial structure. In order
to be able to do so we divide the images into blocks like
in Figure 2, then within each block, we apply a random per-
mutation matrix to move the pixels around within the block.

3.5. Block Scrambling with Descrambler

In order to build deep networks within a reasonable num-
ber of samples, we hypothesize that the classifier needs to
somehow find out how to descramble the data before pass-
ing on to the convolutional layers. As such we modify the
baseline architecture to that of Figure 3, where we added a
block fully connected (BFC) layer. Like it sounds, this layer
of neurons breaks the image down into blocks and takes as
input all the elements within the block.

2



BFC CR CRP CRP FC SM 

Figure 3. Architecture of the block scrambling technique with a
descrambling filter.

This saves on parameters compared to a regular fully
connected layer because each output pixel only depends on
the pixels in the previous layer that lie in the same block,
not the whole layer.

As the scrambling/descrambling operation within the
sub-block can be thought of as a multiplication by a per-
mutation matrix, which consists only of ones and zeros, we
use l1 regularization for when building the loss function.

4. Experiment
In this section we will go over the effects of the perturba-

tions of the image on the accuracy of the classifier. We will
apply the different perturbations to the car example image,
so as to maintain consistency.

4.1. Baseline

We performed a hyper-parameter search and found that
with a learning rate of 0.001 and a regularization strength
of 0.001 we obtained our baseline classification accuracy of
74%. For the remainder of the experiments, unless stated
otherwise, we used these same parameters. Also, it is im-
portant to keep in mind there are 10 labels and thus the ac-
curacy of getting the classification by chance is 10%.

4.2. Gaussian Blur Filter

We show an example filtering of the car with a Gaussian
blur filter in Figure 4. As we increase the size of the blur
filter, we see that the image becomes more and more blurry.
Finer resolution details may be lost, but the general features
still remain visible. It is essentially a low pass filtering that
one would apply before downsampling the image.

The results of the random filtered images classified using
the architecture of Figure 1 can be seen in Figure 5. We
see that while there is a definite drop in the performance of
the Gaussian blur filter, it is less than 5% for all settings.
This result is reasonable and expected, as we are essentially
trying to classify the images by a smaller version of them,
not necessarily distorted - a task that humans should be able
to do easily.

4.3. Random Filter

We show an example random filtering of the car in Figure
6. It is interesting that the results of filtering with random
weights still maintains some structure of the original image.
The colors are distorted and as the size gets larger, it does
become more difficult to tell what the original image was, if

K = 1 K = 3

K = 5 K = 7

K = 1 K = 3

K = 5 K = 7

Figure 4. Example results of filtering the image with random 3×3,
5× 5 and 7× 7 filters.

1 2 3 4 5 6 7 8 9

Filter size (K)

0.40

0.45

0.50

0.55

0.60

0.65

0.70

0.75

0.80

V
a
lid
a
ti
o
n
 A
cc
u
ra
cy

Best Validation accuracy

Baseline

K=3

K=5

K=7

mean

Figure 5. Validation accuracy of images with random filters of size
3, 5 and 7.

you didn’t see the original image first, but it still maintains
much of the details.

The results of the random filtered images classified us-
ing the architecture of Figure 1 can be seen in Figure 7. For
each filter size, we try multiple runs (indicated with dots)
with different random filters so as to get an idea of the vari-

3



K = 1 K = 3

K = 5 K = 7

K = 1 K = 3

K = 5 K = 7

Figure 6. Example results of filtering the image with random 3×3,
5× 5 and 7× 7 filters.

ability of the method. We see that for some random filters
the validation accuracy is very good, whereas for others it is
worse, but on average the performance is roughly the same
as the Gaussian blur filter. This may be a better option than
the blur filter as it is not as easy a task to recognize the orig-
nal image.

4.4. I.I.D. Random Filter

We show an example random filtering of the car in Fig-
ure 8. In this method, we randomly generate different filters
to apply to each image, and in this figure we show the re-
sults of applying three different randomly generated 5 × 5
filters. The goal is that with the differently filtered images,
the classifier will be able to learn more general features.

The results of the i.i.d. random filtered images classified
using the architecture of Figure 1 can be seen in Figure 9.
We see that the performance is significantly worse than the
single random filter, that is a drop of almost 20% in accu-
racy. Having said that, we are still performing significantly
better than the 10% accuracy of random guessing. It says
a lot that we can capture information from this set of ran-
domly filtered images, and the privacy of this is better than
the previous case, as we cannot leverage the color informa-
tion of one image to help us in identifying the others.

1 2 3 4 5 6 7 8 9

Random filter size (K)

0.40

0.45

0.50

0.55

0.60

0.65

0.70

0.75

0.80

V
a
lid

a
ti
o
n
 A

cc
u
ra

cy

Best Validation accuracy

Baseline

K=3

K=5

K=7

mean

Figure 7. Validation accuracy of images with random filters of size
3, 5 and 7.

Figure 8. Example results of filtering the image with different ran-
dom 5× 5 filters.

4.5. Block Scrambling

We show an example block scrambling of the car in Fig-
ure 10. When the block size is 2 × 2, the image is still
discernable as a car. When the block size is 4 × 4, the fact
that it is a car becomes very unclear, and when it is 8× 8, it

4



1 2 3 4 5 6 7 8 9

iid Random filter size (K)

0.40

0.45

0.50

0.55

0.60

0.65

0.70

0.75

0.80

V
a
lid

a
ti
o
n
 A

cc
u
ra

cy

Best Validation accuracy

Baseline

K=3

K=5

K=7

mean

Figure 9. Validation accuracy of images with i.i.d. random filters
of size 3, 5 and 7.

K = 1 K = 2

K = 4 K = 8

K = 1 K = 2

K = 4 K = 8

Figure 10. Example results of scrambling the image with blocks
of size 2, 4 and 8.

is impossible to guess that this was originally a car.
The results of the block scrambling feature classified us-

ing the architecture of Figure 1 can be seen in Figure 11.
It is surprising how well this technique works at classify-
ing the images, despite the scrambling. The performance
is better than the i.i.d. random filters, but slightly poorer

1 2 3 4 5 6 7 8 9

Scrambling Block size (K)

0.40

0.45

0.50

0.55

0.60

0.65

0.70

0.75

0.80

V
a
lid

a
ti
o
n
 A

cc
u
ra

cy

Best Validation accuracy

Baseline

K=2

K=4

K=8

mean

Figure 11. Example results of scrambling the image with blocks
of size 2, 4 and 8.

than when a single random filter is applied. The accuracy is
58% for an 8x8 scrambling which is impossible to decode
visually.

4.6. Block Scrambling with Inferred Descrambler

Finally we look again at the block scrambling technique,
but instead try to descramble the image first. The perturbed
data looks the same as Figure 10, but the difference is in the
classifier, which has the architecture of Figure 3. The results
can be seen in Figure 12. Comparing this to the previous set
up without the descrambler, we see that the performance is
always roughly 10% worse. What this indicates is that the
descrambler has not learned the descrambling well, because
otherwise the performance should increase. In this case we
did have more parameters than the rest of the examples, so
it could be because regularization and learning parameters
were not set optimally, or that more epochs were required
to train the classifier. We are still performing much higher
than the 10% accuracy of random guessing, but we did not
gain anything by including this descrambler block.

To analyze these results further, for each block in the im-
age, we find the closest permutation matrix of the inferred
descrambler in terms of l2 distance. We refer to this permu-
tation matrix as the l2 inferred descrambler and then com-
pare it with the true permutation matrix that should be used
to descramble the block. Figure 13 plots the percentage of
blocks in which the l2 inferred descrambler successfully de-
scrambles some of the pixels inside the block. We observe
that even for the K = 2 case, the percentage of blocks
which had an l2 inferred descrambler exactly equal to the
correct descrambler is less than 5%, and that approximately
70% of the l2 inferred descramblers do not descramble cor-
rectly not even one pixel. The situation is even worse for
the K = 4 case. These result verify that the current proce-
dure is not able to descramble the scrambled images, which

5



1 2 3 4 5 6 7 8 9

Scrambling Block size (K)

0.40

0.45

0.50

0.55

0.60

0.65

0.70

0.75

0.80

V
a
lid

a
ti
o
n
 A

cc
u
ra

cy

Best Validation accuracy

Baseline

K=2

K=4

K=8

mean

Figure 12. Example results of scrambling the image with blocks
of size 2, 4 and 8, and descrambling with a block fully connected
layer.

0.0 0.2 0.4 0.6 0.8 1.0
fraction of positions inside the block correctly descrambled

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

fra
ct
io
n 
of
 b
lo
ck
s

K=2

0.0 0.1 0.2 0.3 0.4 0.5
fraction of positions inside the block correctly descrambled

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

fra
ct
io
n 
of
 b
lo
ck
s

K=4

Figure 13. Histogram of the accuracy of the Inferred Descram-
blers.

corroborates the significantly worse accuracy performance.

5. Conclusion

In this project we covered different pertubations we
could make to the original images to make them difficult
to recognize visually, but still allow for classification. We
saw that Gaussian blurring essentially low pass filtered the
image losing the finer features but still maintaining the gen-
eral structure of the image, and it classifies very well. With
random filtering, it distorted colors, and sometimes blurred
or brought out edges, making it more difficult to recog-
nize than the Gaussian blurred image, but still performed
the classification almost as well as the Gaussian blurred im-
age. Next we looked at i.i.d. random filtering where we
applied a different random filter to the images, and our per-
formance suffered a lot, but we would not be able to visually
use what we know from one image to help us decode others,
as they are filtered differently. We also looked at a different,
non-linear transformation, block scrambling, and we saw
that the images became very difficult to identify visually,
but the performance was quite good, only slightly poorer
than Gaussian blurring. We tried to improve this technique
by including a descrambling filter that the classifier would
try to learn, but we were not able to achieve the results we
were looking for and got much poorer performance, which
is most likely due to an incorrect selection of tuning param-
eters.

Another technique to look into in the future is to look at
the performance when we add noise to the transformed data.
In this case, the more noise we add, the more difficult it
should be to classify the images, but also the more difficult
to tell what the original images were. Adding i.i.d. noise
may not be the ideal case, as the eye may be able to do
some local averaging to remove the noise, but some sort of
spatially correlated noise may make it difficult to tell what
the original image was.

It is also possible to generalize the sub-block scrambling,
by making each pixel a random linear combination of the
sub-block inputs. If we used a block fully connected layer,
the layer would need to be optimized with l2 regularization
as the weights are no longer sparse, but random weights.

The issue of privacy in classification is important for the
future of machine learning in general, and in this project
we covered a few ways of achieving it. While these tech-
niques might not be the ones used in the future, we feel
that scrambling should be involved in some way in the fu-
ture due to its great disruption in the spatial structure of the
image, and how neural networks can somehow still learn
underlying features.

References

[1] G. Bradski. The opencv library. Dr. Dobb’s Journal of Soft-
ware Tools.

6



[2] T. Chen and S. Zhong. Privacy preserving back-propagation
neural network learning. IEEE Transactions on Neural Net-
works, 20(10):1554–1564, 2009.

[3] J. Duchi, M. Jordan, and M. Wainwright. Privacy aware learn-
ing. Journal of the ACM, 61(6), 2014.

7


