
Flexible Transfer Learning via Framework Conversion

Ankit Kumar
Stanford University
Palo Alto, California
ankitk@stanford.edu

Abstract

Recent results in Computer Vision have highlighted the
effectiveness of Transfer Learning. Current Transfer Learn-
ing techniques are good first steps, but there is much work
to be done in how to best Transfer Learn. To do this, re-
searchers need both the flexibility to implement novel ideas,
and pre-trained models to test their ideas with. No frame-
work provides both. In this paper, we develop and release a
library to convert trained models in Caffe to an equivalent
model in the flexible Theano, and then show example usage
with a novel Transfer Learning architecture.

1. Introduction
The fast and powerful Caffe[2] has an incredibly useful

Model Zoo, where researchers can post trained models
along with their architectures and hyperparameter settings.
Caffe also allows for fine-tuning of pre-trained models and
Net Surgery in order to adapt a pre-trained models to new
datasets. This makes simple Transfer Leaning experiments
easy: users can easily download a model, re-initialize and
train new softmax layers, and then finetune through the
architecture of the model.

There is a need for flexibility, so that researchers can
use Transfer Learning along with novel architectures. In
particular, this is necessary to advance research into how to
best Transfer Learn; in addition, many varied tasks benefit
from Transfer Learning, and these tasks often require
more than the typical Convolutional Neural Network layers
(Recurrent Layers, etc).

Our approach to solving this problem is to create a way
to automatically convert Caffe models into Theano, an
extremely flexible library used for mathematical operations.
In this way, we can marry the excellent Model Zoo of Caffe
with the flexibility of Theano, to allow researchers to
quickly prototype and implement novel architectures, with
the ability to use Transfer Learning.

We then explore the problem of how to best transfer
learned representations to new datasets. This, too, is an im-
portant question, as previous methods have taken the sim-
ple approach of cutting off the last softmax layers and re-
initializing softmax layers for the new dataset. We propose
a novel architecture involving gates that adaptively learn
which layers are best for representing which input images.

2. Caffe to Theano Conversion
2.1. Previous Work

2.1.1 Caffe

Caffe itself does offer ways of developing novel architec-
tures and layers. However, this is not the goal of Caffe, and
as a result, it is very hard to do, and it is not an efficient use
of researcher’s time. In order to implement a custom layer,
one must1

• Find appropriate files and create a class declaration

• Implement the layer’s CPU code in a .cpp file, abiding
by Caffe’s (poorly documented) conventions

• Implement the layer’s GPU code in a .cu file, abiding
by Caffe’s (poorly documented) conventions

• Add the layer to the .proto file, including needed pa-
rameters

• Add the layer to the appropriate .cpp

• Write tests for the layer and use the gradient check to
confirm that the Forward/Backward passes are work-
ing

The above steps are only for traditional, feedforward
layers; implementing something like a Recurrent layer
is even harder. Furthermore, Caffe is in constant de-
velopment, and if something changes in the way Caffe

1https://github.com/BVLC/caffe/issues/684

4321

handles any of the above steps, all code must change with it.

The cumbersome steps that one must go through to im-
plement a new layer makes it hard for researchers to quickly
get results on new ideas. Instead of trying something in-
volving a novel layer, they might try to fit what they try to
Caffe’s framework, and not the other way around.

2.1.2 Theano

Theano is a python library that allows users to ”define,
optimize, and evaluate mathematical expressions involv-
ing multi-dimensional arrays efficiently.” 2 Among it’s
features is an excellent symbolic differentiation engine,
allowing users to define models in a symbolic way with the
confidence that the gradients will be computed correctly.
Because of this, it is easy to very rapidly prototype model
ideas, because the gradients do not need to be derived and
computed by hand.

In addition, Theano compiles symbolic mathematical ex-
pressions into C and GPU code automatically, so developers
do not need to know the ins and outs of C or CUDA in order
to get the extreme performance advantages of those imple-
mentations.

2.1.3 Lasagne

Lasagne3 is a thin wrapper around Theano that makes it
easy to define layers that take Theano symbolic expressions
and output other Theano symbolic expressions. By stacking
these layers, one can easily define a large, complex model
in Theano’s symbolic language. Lasagne’s framework
of using layers as atomic units is very similar to Caffe’s
conception of a layer, and hence is a good candidate for
converting Caffe models.

2.2. Approach

We take a conversion approach, so that we can lever-
age both the Caffe Model Zoo and the community that sur-
rounds it, as well as the flexibility of Theano. In particular,
our module has two main functions. One takes a caffe .pro-
totxt file that defines a model architecture and returns an
equivalent architecture in Lasagne; the other takes a caffe
.caffemodel file that holds a trained caffemodel, as well
as a Lasagne model that has the same architecture as the
caffe model, and sets the Lasagne model with the parame-
ters stored in the trained caffemodel – see Figure 1.

Figure 1. Our conversion pipeline

Figure 2. Speed comparison, Caffe’s python bindings vs Theano

2.3. Results

We successfully developed the repository mentioned and
implemented scripts to test it. Following the installa-
tion instructions in the repository, the tests pass from a
clean installation. In addition, the Theano model’s for-
ward pass is 6x faster than Caffe’s python bindings. See
Figure 2 for a speed comparison. The tests were done
by adding the time of 10 runs. For Caffe, we called
Net.forward(**{net.inputs[0]:mat}), a function call in the
Caffe examples. For Theano, we compiled a forward func-
tion and called it on the same mat.

2.3.1 Example Usage

The repository makes it easy to convert Caffe models by
exposing a .convert method that accepts an architecture
prototxt file and a caffemodel file, and returns a Lasagne
Model. In addition, it is easy to convert an image mean

2http://deeplearning.net/software/theano/
3https://github.com/benanne/Lasagne

4322

Figure 3. Example code snippet

binaryproto file into a numpy image representation by the
.convert mean image function. The above code results in
the following output:

Figure 4. Output of code snippet

as intended. See the repository 4 for more. Note that the
repository is still in active development.

2.3.2 Difficulties

There were a number of difficulties we encountered when
developing the repository. First and foremore, Caffe
supports many architectures that are not really in use
anymore, such as LRN layers and grouped convolutional
layers. Many caffemodels use these layers. In order to
convert these caffemodels into equivalent Theano models,
we had to learn how these layers worked and implement
them ourselves. They are in the ”caffe layers” directory in
the repository.

In addition, in order to make use of the excellet pylearn2
cuda-convnet wrappers, we had to go into the pylearn2 code
and change certain functions in order for them to accept the
”group” argument. See the repository for instructions.

2.4. Future Steps

There are many more features we would like to add to the
conversion repository, and the repository is currently under
active development working on these features. Ideas for fu-
ture improvements include:

• Comprehensive documentation and a setup.py installa-
tion.

• A solver class that works on the Lasagne Mod-
els, which would allow for automatic conversion of
solver.prototxts. A prototype of this class is already
implemented.

• A dataset class that would deal with loading data on the
CPU/GPU and providing it to the solver. A prototype
of this class is already implemented.

• Extending the Lasagne Model class to allow for slicing
and adding Lasagne Models for intuitive net surgery.

4https://github.com/kitofans/caffe-theano-conversion

Figure 5. Filters learned by a Convolutional Neural Network. Note
the abstract quality of them.

• Supporting snapshots of solvers and models.

• Supporting conversions from other frameworks such
as Torch7.

Long-term, we would like to develop this repository into
a way to convert models between different frameworks so
that researchers who are comfortable with one framework
can still get the benefits of work done on other frameworks.
Caffe and Theano are a good place to start because of their
popularity, easy of use, and interface.

3. A Novel Transfer Learning Architecture
We now describe our experiments in using the above-

mentioned repository for Transfer Learning experiments.
The task is Transfer Learning for Image Classification. We
take a pre-trained model on the Caffe Model Zoo and ex-
plore how to best transfer the learned representation to a
new, smaller dataset.

3.1. Previous Work

Convolutional Neural Networks, recently made pop-
ular by Krizhevsky’s performance on the ImageNet2012
Challenge, take as input raw pixel values of images and
propagate those images through alternating layers of Con-
volutional and Pooling layers, until finally going through
Fully Connected layers ending in a linear classifier. They
are successful because through the deep architecture, the
model learns a feature representation of the image, and
then uses that feature representation to classify the image
at the end.

Convolutional Neural Networks are desirable for
Transfer Learning, then, because that learned feature

4323

representation ought to be a useful place to start for any
image, not just the ones that the CNN was originally
trained. Visualizing the filters of a trained CNN gives good
evidence for this idea, as the filters often look for simple
things like lines in different orientations. Such high-level,
abstract features ought to be good features for any image.

Intuition would also say that the features that a CNN
learns should get worse, in terms of generalization to
other images, as one gets nearer to the end of the CNN.
This is because near the end of the CNN architecture,
the immediate goal of the model is to classify the images
in one of n classes, not to capture general, high-level
features of the image. Empirical evidence so far has no
backed this intuition, however, as most results state that the
performance of Transfer Learning from different layers of
the original CNN more or less increases as you get deeper
through the CNN.

Recently there has been some work in benchmarking
Transfer Learning methods for various datasets. Razavian
et al famously [4] applied the weights of the popular
OverFeat model to many diverse datasets and reported
astonishing results. Their method was simple; they
chopped off the softmax layer of the OverFeat network and
trained a linear SVM on the features extracted from the
first fully connected layer. The report specifically that the
performance of their SVM does better as the layer at which
they extract features gets deeper.

Yosinski et al[5] took a more academic approach and
rigorously evaluated transfer learning by splitting their
dataset into two sets and training classifiers on each set
independently before transferring their weights to the other
set. They find that chopping off the last layers of the
original network and fine-tuning a new network gives best
performance.

Importantly, most of the previous work on transfer learn-
ing does not attempt to devise new architectures to exploit
the learned representation; rather, they use the same archi-
tecture as before, and experiment with the layer at which the
original network is ”chopped”, or different hyperparametes
and settings on how the new network is trained or how the
weights are fine-tuned.

3.2. Our Approach

We take the approach of exploring novel architectures
for Transfer Learning that do more than just use the same
architecture as the original model and tuning parameters in
different ways. Our model, which we call a Gated Trans-
fer Network (GTN), is based on the intuition that differ-
ent layers of the original network are better than others at

Figure 6. GTN model. Not shown: p(z).

Figure 7. Example MIT-67 images. Compare to ImageNet.

Figure 8. Example ImageNet images. Note prominent objects in
the center of the image; different than MIT-67

capturing meaningful semantic information of different im-
ages. This is because the original network was trained on
a very different distribution of images, and thus some im-
ages in the new dataset might be best represented by dif-
ferent layers in the original network, as later layers become
more and more original-dataset-specific. Images in the new
dataset that happen to look similar to images in the origi-
nal dataset might be best represented by later layers; other
images might be best represented by earlier layers.

Figure 5 shows the GTN model. For every layer of
interest (in our experiments, these are each of the fully-
connected layers after the convolutional layers), we connect
the output of that layer to the Gate layer. The gate layer then
has an nxd input, where n is the number of layers of ineter-
est and d is the dimensionality of the output of those layers.
In our experiments, n is 2 and d is 4096.

The Gate layer then computes gates for each of the n

4324

inputs:

zi = f(W i
zxi + bz) (1)

ri = p(z)i (2)
gi = ri � xi (3)

Where W i
z is the ith gate matrix in Rdxd, bz is the d-

length bias, f is a nonlinearity z is the matrix of zi’s in
Rnxd, p is a function that normalizes z column-wise so that
all the n gates add to a vector of ones, and� is elementwise
multiplication. In our experiments, we use f = elementwise
sigmoid and p = the softmax function. This gate mecha-
nism is similar to the Gated Recurrent Unit[1]. The gates
adaptively learn which of the n representations are best for
classifying the given image, and weight the better represen-
tations more heavily in the classification task.

3.2.1 Dataset

We test the GTN on the MIT-Scenes dataset[3], a chal-
lenging dataset because it is significantly different from
ImageNet. Note the difference in distribution between
MIT-Scenes and ImageNet; the ImageNet images tend to
have objects centrally located in the image and most of
the semantic meaning is in that central object. The MIT-
Scenes dataset, in contrast, has semantic meaning dispersed
throughout the whole image. In addition, the objects one
might look for are not centrally located, but rather, are dis-
tributed throughout the scene.

3.2.2 Data Processing and Model Choice

We use the BVLC Reference CaffeNet, an architecture sim-
ilar to AlexNet. It was trained on ImageNet2012. To pre-
process the data, we read in the images from MIT-Scenes
and resize them to (3,227,227). We then subtract the mean
image of ImageNet2012.

3.3. Results
Test Accuracy

Softmax FC2 0.54263
Softmax FC1 0.55315

Ensemble Softmax FC1, Softmax FC2 0.5812
Simple Average FC1,FC2 0.56593

CNN-SVM 58.4
Gated Transfer 0.59912

The above table shows our results. Softmax FC1 and FC2
are training a new Softmax on the features extracted from
FC1 or FC2. Average FC1,FC2 is training a new Softmax
on the average of the features extracted from the two fully
connected layers.

Figure 9. Gates on FC6 layer

Figure 10. Gates on FC7 layer

CNN-SVM is reported from [4]. Their methodology is
extracting features from FC1 and training an SVM on top.
CNN-SVM already outperforms most non-CNN based clas-
sification schemes, as reported in the paper.

3.3.1 Analysis of Results

The fact that the ensemble of Softmax FC6 and Softmax
FC7 performs significantly better than either classifier
gives good evidence that the two feature representations are
better at predicting different images.

See Figures 9 and 10 for visualizations of the gates.
Each column is a dimension, and each row is an image
in the test set. It is clear that the gates are learning that
some dimensions from the second fully connected layer are
better than the corresponding dimensions in the first fully
connected layer and vice versa. The feature representation
that ends up going to the classifier at the end can be thought
of as the sum of the two arrays being visualized here. In
this way, the GTN can selectively pick certain features
from FC6 and certain ones from FC7.

4325

In addition, close inspection of the visualizations show
that, especially for the gates on FC6, different images have
a different pattern. This lends credence to the intuition that
the gates are adaptively learning which features are better
for which image, which in turn gives credence to the intu-
ition that some features are better for some images, while
others are better for others. In general, it seems that FC7
is better on more dimensions than FC6; it is promising that
the gates learn to selectively pick the dimensions that each
are better in.

3.4. Future Work

There is much more work to be done on the problem of
how to best Transfer Learn from pre-trained models. We
would like to experiment more with fine-tuning hyperpa-
rameters and data augmentations, as time and technical
constraints prevented us from rigorously cross-validating
various settings. We were unable to get any good run of a
full fine-tuning of the model. In addition, increasing the
number n of layers we send to the gates is also something
to try, though the parameter space gets much bigger as we
would need to include a fully-connected layer so that all
the vectors have the same dimensionality d. With enough
correct data augmentation, this is probably doable, and is
promising for future research.

In addition, we would like to explore methods that ex-
plicitly recognize the fact that the distribution of images in
the new dataset is different than the distribution of images
in the original dataset. For example, consider how a human
would interact if given a new dataset of images and tasked
with classifying them. They would try to represent the new
images in a schema that makes sense for their experiences;
perhaps by scanning through the images and looking for
areas that they can easily understand. In this way, they are
converting the new dataset of images into a distribution
more like their ”old dataset of images”: they throw away
parts of the image that are undecipherable to them, and
only keep parts of the image that fit the distribution they
are used to.

In a similar way, we might be able to devise an archi-
tecture that first learns to converts a new image into one
that better fits the distribution of the original dataset (per-
haps a recurrent attention mechanism, perhaps a convolu-
tional/deconvolutional encoder), and then propagates that
new image through the original network. This would better
solve the problem that Transfer Learning faces, which is the
difference in source distributions of the datasets.

References
[1] J. Chung, Ç. Gülçehre, K. Cho, and Y. Bengio. Empirical eval-

uation of gated recurrent neural networks on sequence model-

ing. CoRR, abs/1412.3555, 2014.
[2] Y. Jia, E. Shelhamer, J. Donahue, S. Karayev, J. Long, R. Gir-

shick, S. Guadarrama, and T. Darrell. Caffe: Convolu-
tional architecture for fast feature embedding. arXiv preprint
arXiv:1408.5093, 2014.

[3] A. Quattoni and A.Torralba. Recognizing indoor scenes.
IEEE Conference on Computer Vision and Pattern Recogni-
tion, 2009.

[4] A. S. Razavian, H. Azizpour, J. Sullivan, and S. Carlsson.
CNN features off-the-shelf: an astounding baseline for recog-
nition. CoRR, abs/1403.6382, 2014.

[5] J. Yosinski, J. Clune, Y. Bengio, and H. Lipson. How
transferable are features in deep neural networks? CoRR,
abs/1411.1792, 2014.

4326

