
 

 

Abstract 
 

With a new method called CLARITY, intact 
brains are chemically made transparent, 
allowing unprecedented high-resolution 
imaging of fluorescently-labeled neurons 
throughout the brain. However, traditional 
cell-detection approaches, which are based 
on a combination of computer vision 
algorithms hand-tuned for use on dye-stained 
slices, do not perform well on CLARITY 
samples. Here I present a method for 
detecting neuron cell bodies in CLARITY 
brains based on convolutional neural 
networks.  

1. Introduction 
Increasingly, experiments in neuroscience 

are generating super high-resolution images 
of brain samples in which individual neuron 
cell bodies can be readily observed. Locating 
and counting the cell bodies are often of 
scientific interest. Because these datasets can 
be as large as hundreds of gigabytes, hand-
detection is ineffective, and an algorithmic 
approach is necessary. 

In many cases, brain samples are sliced by 
machine into extremely thin sections, a dye is 
applied that stains cell bodies and other 
tissues, and then whole-brain images are 
reconstructed from images of individual 
slices. Various algorithms have been 
developed to detect dye-stained cell bodies in 
these samples. A newly developed method 
for chemically clearing brain tissue, called 
CLARITY, allows imaging of the entire 
intact brain and enabling high-resolution 
imaging along all three dimensional axes 
[1,2]. Neurons in CLARITY samples are 
labeled with fluorescent proteins. Many 

existing cell-detection algorithms perform 
poorly on CLARITY samples because of 
their fundamentally different nature. 

 

 
Figure 1: Clearing of brain tissue using CLARITY, 

from [1]. 
 

Here, I apply convolutional neural 
networks (CNNs) to the problem of cell-
detection in mouse CLARITY brains. CNNs 
have been applied with great success to cell-
detection in stained brain slices [3] as well as 
mitosis detection in breast cancer histology 
images [4]. The algorithm I implement will 
identify for a given pixel, when provided 
with the image in a small 3D window 
centered at the pixel, whether that pixel 
belongs to the cell body of a fluorescently-
labeled neuron. By running the CNN on a 
region of the brain image, the cell bodies will 
be identified as regions of pixels will high 
probability of being a cell body, and then 
simple computer vision algorithms can be 
used to segment the cell bodies from the 
pixel probabilities. 

 

2. Data 
 

The data used in this project are 
unpublished images of clarified mouse brains 
from the Deisseroth Lab at Stanford where I 
am doing a research rotation, used with 
permission. In each brain, the subset of 
neurons which exhibit high activity during an 
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experimentally chosen window of about 4 
hours are labeled fluorescently. Brains from 
three different conditions have been 
collected: a pleasure condition, in which the 
mouse was administered cocaine during the 
time window; a fear condition, in which the 
mouse was repeatedly shocked during the 
time window; and a control. A robust cell-
detection algorithm is needed in order to 
rigorously compare the distribution of active 
cells between different brain regions in the 
three conditions.  

Samples were imaged using a light-field 
microscope and have a resolution of 0.585µm 
in the x- and y-directions and 5µm in the z-
direction. The whole brain at native 
resolution is 500GB. Labels are cell-filling, 
including both the cell body and projections, 
so in many areas the cell bodies are 
interspersed with a dense background 
network of projections. 

Because the dataset is so large, it is 
impractical to train and test on the entire 
volume. Instead, I have chosen a few regions 
of interest (ROIs) which are representative of 
the types of structures seen throughout the 
brain. In this report, I focus on one particular 
ROI for my testing and training. The 
dimensions of this ROI were 1577 x 1577 x 
41 pixels, or 923µm x 923µm x 205µm. 

 

 
 

Figure 2: An example slice of a CLARITY image 
from the main training and testing volume. 

 

3. CNN model 
 

The CNN model will take as input a small 
window of data and will output a prediction 
of the probability that the center pixel is 
inside a cell body. Because of this, input 
windows should have an odd number of 
pixels along each dimension. 

After some experimentation with the model 
architecture (described below), the final 
learned model was of the following 
architecture:  

 
Layer Type Volume Filter 
0 Input 93x93 pixels - 
1 Conv (91x91)P x 16 filters 3x3x3 
3 Conv (89x89)P x 16F 3x3x3 
4 MP (44x44)P x 16F 2x2x2 
5 Conv (42x42)P x 16F 3x3x3 
7 Conv (40x40)P x 16F 3x3x3 
8 MP (20x20)P x 16F 2x2x2 
9 FC 100 neurons - 
10 FC 2 neurons (output) - 

 
To store the parameters and volume, this 

architecture would require just a few 
megabytes. Thus, a batch of 500 training 
examples, with miscellaneous memory 
included, which would reliably fit on the 
GPUs of most clusters. 

 

4. Training 
 

The first step in the training process is to 
generate training data. To this end, I 
examined the ROI using ImageJ, and used 
the point-picker tool to select centroids of 
cells. This process was somewhat tricky 
because ImageJ only allows individual z-
stacks to be viewed one at a time, so I had to 
scroll between z-stacks both to find the center 
point in the z-direction as well as to confirm 
that I had not already marked the cell in 
another z-stack. In this manner, I labeled 267 



 

 

cell centroids.  
Next, I wrote a series of python scripts to 

extract training examples to feed into the 
CNN, based on the labeled cell centroids. 
This was necessary because the CNN is 
trained on windows centered around test 
pixels and does not learn the cell centroids 
directly. 

The first part of the script loaded the ROI 
volume and the labeled cell centroids. It also 
displayed the centroid labels on the volume 
as well as windows around each cell centroid 
to confirm that the label and volume were 
indexed correctly. This turned out to involve 
unexpected, counterintuitive errors whereby 
centroid labels were accurate when displayed 
on the full volume but images of individual 
cells were not extracted properly. After 
significant confusion, I realized the problem 
arose from the fact that matplotlib plots the 
x-direction on the horizontal axis when 
plotting data but the y-direction on the 
horizontal axis when displaying images using 
imshow; thus, the problem was fixed by 
swapping the x- and y-axes when 
appropriate. 

 
Figure 3: Example cell centroids 
 
The second part of the script selected pixels 

that would be the center pixel of true and 

false training examples. Positive pixel 
examples were chosen as all pixels within a 
distance R from a hand-labeled centroid. R 
was measured in microns, and the data was 
rescaled from pixels into microns based on 
the microscope resolution. After choosing the 
positive pixels, I displayed the window 
around a small subset of the pixels in order to 
verify that the examples were visually 
correct. The value of R was chosen so that all 
positive pixel examples were unambiguously 
in cell centroids by visual inspection. In this 
manner, around 200,000 positive pixel 
examples were chose from this ROI. 

Next, the same number of negative pixel 
examples was chosen. The first iteration of 
the script chose negative training pixels 
randomly and eliminated pixels that were 
within a distance R from a cell centroid. 
However, I later noticed that some negative 
examples were actually still inside cells 
(since R was a conservative estimate), and 
there were few training examples near cells 
to teach the CNN about where cell 
boundaries were. Thus, in the second 
iteration of the script, 20% of negative pixel 
examples were chosen to be between a 
distance of R0 = 12µm and R1 = 16µm away 
from cell centroids. These were chosen 
uniformly at random, using a spherical 
coordinates representation. The remaining 
negative pixel examples were chosen 
randomly and at least a distance of R0 away 
from cell centroids. 

The third part of the script generated the 
training examples from the pixel examples 
chosen above. First, the examples were 
merged and shuffled. Next, the examples 
were divided into train, test, and validation 
sets in the ratio of 5 to 1 to 1. Finally, for 
each pixel, the 93 pixel by 93 pixel windows 
centered at that pixel was extracted from the 
CLARITY volume, the mean value of the 
volume was subtracted from the window, and 
it was saved to a numpy array. However, as I  



 

 

 

 
Figure 4: Sample positive (green, above) and negative 
(red, below) pixel examples. 
 
scaled up my training data over the course of 
the project, I began having problems saving 
this much data and then loading it all into 
GPU memory. To fix this problem, I adjusted 
my script to just output the (shuffled and 
split) pixel example locations, and the 
windows were extracted by the CNN training 
program instead. This did not significantly 
slow down the training process. 

 

5. Training 
 

My implementation of the CNN training 
code was based on online tutorials 
implementing a “LeNet” CNN, available at 
www.deeplearning.net. The example code is 
written in python and makes extensive use of 
the python package Theano to construct 
symbolic formulas. I modified this code 
substantially in order to implement the CNN 
architecture described above. While use of 
Caffe was highly recommended, it did not 
support convolution over 3D volumes. 
Because I wanted to be able to eventually 
extend the CNN cell detection code over the 
full 3D volume, I developed my code using 
Theano directly. As a result, a major 
challenge involved with the project included 
understanding and learning to use Theano; 
howeve, I learned a lot about the inner 
workings of CNN implementation. 

The convolutional, max pool, and fully-
connected layers were implemented in a 
standard way based on the LeNet tutorial. 
Non-linearities used the ReLU function. 
Values for the weights were initialized as an 
input parameter scaled by the square root of 
the “fan in” plus the “fan out” of the neuron. 
The final layer used logistic regression to 
map the 100 neurons of the first fully-
connected layer to the pixel probability of 
being a centroid.  

Training was performed on an Amazon 
Web Services G2 GPU box, using a high-
performance NVIDIA GPU with 1,536 cores 
and 4GB of memory. This acceleration 
allowed much quicker exploration of 
parameter space. After some 
experimentation, a learning rate of 0.0001 
and a weight scaling factor of 1.0 was 
chosen. (Initial attempts to train the CNN 
produced no improvements in performance. 
After some investigation, it turned out this 
was due to the initial weights being too small 
for the fully connected layers.) 



 

 

Once the parameters were chosen within an 
appropriate range, the CNN tended to learn 
very quickly, achieving an error of ~4% (on 
the pixel-wise classification) before even 
getting through the whole training dataset. 
This suggests that the input examples are 
relatively simple. After training for 10 
epochs, a best performance error of 2.05% 
was achieved on the pixel-wise classification.  

 
 

6. Cell Detection 
 
Once a CNN has been trained, it is used as 

a sort of pre-processing step for cell 
detection. That is, the learned model is 
applied to the whole volume to map it to a 
volume of pixel probabilities, enhancing the 
intra-cell pixels and eliminating distractions 
from the non-cell pixels. However, I quickly 
learned that mapping the learned model over 
the entire volume in a batched but naïve way 
was computationally infeasible, even on a 
GPU. Mapping of a single pixel could take a 
noticeable fraction of a second, but the 
mapping has to be applied to the 100,000,000 
pixels in the chosen volume, and ultimately 
on billions of pixels in the full CLARITY 
volume. 

In order to accelerate the pixel probability 
mapping, I implemented the trick described 
in class, apparently known as 
“convolutionalization”, where fully-
connected layers for the mapping process are 
transformed into convolutional layers with 
filter size equal to the input of the fully-
connected layer of the original trained model. 
By doing so, the entire ROI volume can be 
fed into the convolutionalized model at once, 
and the output is all the pixel probabilities 
with resolution 4x less in both dimensions. 
(A factor of 4 less in this case, since the two 
max-pool layers scaled down by a factor of 2 
each.) Thus, mapping the entire volume can 
be reduced to 16 mappings of the  

 

 

 
Figure 5: Learned mapping and cell detection. (Top) 

original image; (middle) CNN-mapped pixel 
probabilities; (bottom) detected cells. Cell centroids 
are labeled by red dots in all images. 

 



 

 

convolutionalized model, stitched back 
together. Using this optimization, mapping of 
the 1577 pixel by 1577 pixel by 41 pixel 
volume which was previously 
computationally intractable now requires 
about 10 minutes on a GPU. 

To detect cells, I wrote a python script 
using simple computer vision methods. First, 
I apply a binary threshold using Otsu’s 
method. Next, I perform a binary opening in 
order to reduce the miscellaneous isolated 
pixels. Third, I cluster pixels by connected 
components and remove any clusters which 
are too small to be cell bodies; in this case, 
clusters with volume smaller than a cell with 
radius 5µm. Finally, the centroids are 
computed as the center of mass of the 
remaining connected components. 

 

7. Evaluation 
 
The problem of cell detection in CLARITY 

volumes is somewhat distinct from the image 
classification problem addressed in class 
because the pure percentage performance of 
the CNN is not the main metric for quality. 
Instead, the performance that matters is the 
precision and recall on the cell detection. 

To evaluate the CNN and the cell detection 
code, I trained a model using positive and 
negative training examples drawn from just 
the right half of the ROI, and then evaluated 
precision and recall based on the hand labels 
in the left half of the ROI. Precision and 
recall was found to be 91% and 91% 
respectively, which is on par with the best 
cell-detection algorithms for calcium imaging 
of cell bodies. 

 

8. Reflections and future work 
 
In this project, I have trained a 

convolutional neural network to learn pixel-

wise probabilities of cell bodies in a 
CLARITY volume. After applying the 
learned probability mapping, cell detection 
can be achieved using simple computer 
vision approaches. As a proof-of-principle, I 
demonstrated that this approach can achieve 
greater than 90% precision and recall on one 
region of the CLARITY volume. 

However, this is just the first step towards 
achieving a robust, CNN-based cell detection 
pipeline that can be run on whole CLARITY 
volumes. Two next steps are immediately 
apparent. First, it is important to test the 
approach at different regions in the 
CLARITY volume, as detection in some 
regions can be more difficult than others. As 
a preliminary test, I ran the CNN mapping 
learned from the first ROI on several other 
ROIs; without having seen those regions, it 
performed quite well on a few, but also did 
not perform well on a few. Adding training 
examples from those new ROI would fix this 
problem. Second, the CNN model should 
ultimately be modified to run over 3D input 
volumes. Cell detection will be much more 
robust with use of 3D volumes; for example, 
images containing thick fiber bundles might 
fool a 2D mapping if the fibers run 
perpendicular to the z-plane, but these fibers 
will be easily distinguished from cells with a 
3D mapping.  

This approach to cell detection has two 
particular advantages for CLARITY data. 
First, a number of factors influence how cells 
look across different regions of the same 
CLARITY volume, including imaging 
clarity, types of neurons, and expression of 
the fluorescent protein gene. Because the 
CNN-based mapping learns from the input 
training examples, it should be able learn a 
common mapping across the whole diversity 
of cell morphologies. Second, most standard 
cell-detection algorithms perform the 
detection in 2D slices. This fails to use the 
distinct advantages of the CLARITY imaging 
method, which provides z-resolution around 



 

 

10 times higher than other imaging 
approaches.  

The primary disadvantage to using a CNN-
based detection approach is that the 
algorithm development process is slow. In 
particular, training examples must be chosen 
meticulously for each region, ensuring that 
all types of cell pixels and non-cell pixels are 
chosen. Because there is no quick interface 
between volume images and the training 
example extraction code, this process can 
often require a lot of time. (On the other 
hand, since the CNN learned extremely 
quickly based on just a few examples, it may 
be sufficient to input fewer examples but 
from much more diverse regions.) Secondly, 
applying the learned CNN mapping is quite 
computationally intensive, even using a GPU. 
To map an entire 500GB CLARITY brain 
using the learned CNN, a parallelized 
approach over AWS GPU boxes would likely 
be required. 
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