

Abstract

With a new method called CLARITY, intact
brains are chemically made transparent,
allowing unprecedented high-resolution
imaging of fluorescently-labeled neurons
throughout the brain. However, traditional
cell-detection approaches, which are based
on a combination of computer vision
algorithms hand-tuned for use on dye-stained
slices, do not perform well on CLARITY
samples. Here I present a method for
detecting neuron cell bodies in CLARITY
brains based on convolutional neural
networks.

1. Introduction
Increasingly, experiments in neuroscience

are generating super high-resolution images
of brain samples in which individual neuron
cell bodies can be readily observed. Locating
and counting the cell bodies are often of
scientific interest. Because these datasets can
be as large as hundreds of gigabytes, hand-
detection is ineffective, and an algorithmic
approach is necessary.

In many cases, brain samples are sliced by
machine into extremely thin sections, a dye is
applied that stains cell bodies and other
tissues, and then whole-brain images are
reconstructed from images of individual
slices. Various algorithms have been
developed to detect dye-stained cell bodies in
these samples. A newly developed method
for chemically clearing brain tissue, called
CLARITY, allows imaging of the entire
intact brain and enabling high-resolution
imaging along all three dimensional axes
[1,2]. Neurons in CLARITY samples are
labeled with fluorescent proteins. Many

existing cell-detection algorithms perform
poorly on CLARITY samples because of
their fundamentally different nature.

Figure 1: Clearing of brain tissue using CLARITY,

from [1].

Here, I apply convolutional neural
networks (CNNs) to the problem of cell-
detection in mouse CLARITY brains. CNNs
have been applied with great success to cell-
detection in stained brain slices [3] as well as
mitosis detection in breast cancer histology
images [4]. The algorithm I implement will
identify for a given pixel, when provided
with the image in a small 3D window
centered at the pixel, whether that pixel
belongs to the cell body of a fluorescently-
labeled neuron. By running the CNN on a
region of the brain image, the cell bodies will
be identified as regions of pixels will high
probability of being a cell body, and then
simple computer vision algorithms can be
used to segment the cell bodies from the
pixel probabilities.

2. Data

The data used in this project are
unpublished images of clarified mouse brains
from the Deisseroth Lab at Stanford where I
am doing a research rotation, used with
permission. In each brain, the subset of
neurons which exhibit high activity during an

Detection of fluorescent neuron cell bodies using convolutional neural networks

Adrian Sanborn

Stanford University
asanborn@stanford.edu

experimentally chosen window of about 4
hours are labeled fluorescently. Brains from
three different conditions have been
collected: a pleasure condition, in which the
mouse was administered cocaine during the
time window; a fear condition, in which the
mouse was repeatedly shocked during the
time window; and a control. A robust cell-
detection algorithm is needed in order to
rigorously compare the distribution of active
cells between different brain regions in the
three conditions.

Samples were imaged using a light-field
microscope and have a resolution of 0.585µm
in the x- and y-directions and 5µm in the z-
direction. The whole brain at native
resolution is 500GB. Labels are cell-filling,
including both the cell body and projections,
so in many areas the cell bodies are
interspersed with a dense background
network of projections.

Because the dataset is so large, it is
impractical to train and test on the entire
volume. Instead, I have chosen a few regions
of interest (ROIs) which are representative of
the types of structures seen throughout the
brain. In this report, I focus on one particular
ROI for my testing and training. The
dimensions of this ROI were 1577 x 1577 x
41 pixels, or 923µm x 923µm x 205µm.

Figure 2: An example slice of a CLARITY image
from the main training and testing volume.

3. CNN model

The CNN model will take as input a small
window of data and will output a prediction
of the probability that the center pixel is
inside a cell body. Because of this, input
windows should have an odd number of
pixels along each dimension.

After some experimentation with the model
architecture (described below), the final
learned model was of the following
architecture:

Layer Type Volume Filter
0 Input 93x93 pixels -
1 Conv (91x91)P x 16 filters 3x3x3
3 Conv (89x89)P x 16F 3x3x3
4 MP (44x44)P x 16F 2x2x2
5 Conv (42x42)P x 16F 3x3x3
7 Conv (40x40)P x 16F 3x3x3
8 MP (20x20)P x 16F 2x2x2
9 FC 100 neurons -
10 FC 2 neurons (output) -

To store the parameters and volume, this

architecture would require just a few
megabytes. Thus, a batch of 500 training
examples, with miscellaneous memory
included, which would reliably fit on the
GPUs of most clusters.

4. Training

The first step in the training process is to
generate training data. To this end, I
examined the ROI using ImageJ, and used
the point-picker tool to select centroids of
cells. This process was somewhat tricky
because ImageJ only allows individual z-
stacks to be viewed one at a time, so I had to
scroll between z-stacks both to find the center
point in the z-direction as well as to confirm
that I had not already marked the cell in
another z-stack. In this manner, I labeled 267

cell centroids.
Next, I wrote a series of python scripts to

extract training examples to feed into the
CNN, based on the labeled cell centroids.
This was necessary because the CNN is
trained on windows centered around test
pixels and does not learn the cell centroids
directly.

The first part of the script loaded the ROI
volume and the labeled cell centroids. It also
displayed the centroid labels on the volume
as well as windows around each cell centroid
to confirm that the label and volume were
indexed correctly. This turned out to involve
unexpected, counterintuitive errors whereby
centroid labels were accurate when displayed
on the full volume but images of individual
cells were not extracted properly. After
significant confusion, I realized the problem
arose from the fact that matplotlib plots the
x-direction on the horizontal axis when
plotting data but the y-direction on the
horizontal axis when displaying images using
imshow; thus, the problem was fixed by
swapping the x- and y-axes when
appropriate.

Figure 3: Example cell centroids

The second part of the script selected pixels

that would be the center pixel of true and

false training examples. Positive pixel
examples were chosen as all pixels within a
distance R from a hand-labeled centroid. R
was measured in microns, and the data was
rescaled from pixels into microns based on
the microscope resolution. After choosing the
positive pixels, I displayed the window
around a small subset of the pixels in order to
verify that the examples were visually
correct. The value of R was chosen so that all
positive pixel examples were unambiguously
in cell centroids by visual inspection. In this
manner, around 200,000 positive pixel
examples were chose from this ROI.

Next, the same number of negative pixel
examples was chosen. The first iteration of
the script chose negative training pixels
randomly and eliminated pixels that were
within a distance R from a cell centroid.
However, I later noticed that some negative
examples were actually still inside cells
(since R was a conservative estimate), and
there were few training examples near cells
to teach the CNN about where cell
boundaries were. Thus, in the second
iteration of the script, 20% of negative pixel
examples were chosen to be between a
distance of R0 = 12µm and R1 = 16µm away
from cell centroids. These were chosen
uniformly at random, using a spherical
coordinates representation. The remaining
negative pixel examples were chosen
randomly and at least a distance of R0 away
from cell centroids.

The third part of the script generated the
training examples from the pixel examples
chosen above. First, the examples were
merged and shuffled. Next, the examples
were divided into train, test, and validation
sets in the ratio of 5 to 1 to 1. Finally, for
each pixel, the 93 pixel by 93 pixel windows
centered at that pixel was extracted from the
CLARITY volume, the mean value of the
volume was subtracted from the window, and
it was saved to a numpy array. However, as I

Figure 4: Sample positive (green, above) and negative
(red, below) pixel examples.

scaled up my training data over the course of
the project, I began having problems saving
this much data and then loading it all into
GPU memory. To fix this problem, I adjusted
my script to just output the (shuffled and
split) pixel example locations, and the
windows were extracted by the CNN training
program instead. This did not significantly
slow down the training process.

5. Training

My implementation of the CNN training
code was based on online tutorials
implementing a “LeNet” CNN, available at
www.deeplearning.net. The example code is
written in python and makes extensive use of
the python package Theano to construct
symbolic formulas. I modified this code
substantially in order to implement the CNN
architecture described above. While use of
Caffe was highly recommended, it did not
support convolution over 3D volumes.
Because I wanted to be able to eventually
extend the CNN cell detection code over the
full 3D volume, I developed my code using
Theano directly. As a result, a major
challenge involved with the project included
understanding and learning to use Theano;
howeve, I learned a lot about the inner
workings of CNN implementation.

The convolutional, max pool, and fully-
connected layers were implemented in a
standard way based on the LeNet tutorial.
Non-linearities used the ReLU function.
Values for the weights were initialized as an
input parameter scaled by the square root of
the “fan in” plus the “fan out” of the neuron.
The final layer used logistic regression to
map the 100 neurons of the first fully-
connected layer to the pixel probability of
being a centroid.

Training was performed on an Amazon
Web Services G2 GPU box, using a high-
performance NVIDIA GPU with 1,536 cores
and 4GB of memory. This acceleration
allowed much quicker exploration of
parameter space. After some
experimentation, a learning rate of 0.0001
and a weight scaling factor of 1.0 was
chosen. (Initial attempts to train the CNN
produced no improvements in performance.
After some investigation, it turned out this
was due to the initial weights being too small
for the fully connected layers.)

Once the parameters were chosen within an
appropriate range, the CNN tended to learn
very quickly, achieving an error of ~4% (on
the pixel-wise classification) before even
getting through the whole training dataset.
This suggests that the input examples are
relatively simple. After training for 10
epochs, a best performance error of 2.05%
was achieved on the pixel-wise classification.

6. Cell Detection

Once a CNN has been trained, it is used as

a sort of pre-processing step for cell
detection. That is, the learned model is
applied to the whole volume to map it to a
volume of pixel probabilities, enhancing the
intra-cell pixels and eliminating distractions
from the non-cell pixels. However, I quickly
learned that mapping the learned model over
the entire volume in a batched but naïve way
was computationally infeasible, even on a
GPU. Mapping of a single pixel could take a
noticeable fraction of a second, but the
mapping has to be applied to the 100,000,000
pixels in the chosen volume, and ultimately
on billions of pixels in the full CLARITY
volume.

In order to accelerate the pixel probability
mapping, I implemented the trick described
in class, apparently known as
“convolutionalization”, where fully-
connected layers for the mapping process are
transformed into convolutional layers with
filter size equal to the input of the fully-
connected layer of the original trained model.
By doing so, the entire ROI volume can be
fed into the convolutionalized model at once,
and the output is all the pixel probabilities
with resolution 4x less in both dimensions.
(A factor of 4 less in this case, since the two
max-pool layers scaled down by a factor of 2
each.) Thus, mapping the entire volume can
be reduced to 16 mappings of the

Figure 5: Learned mapping and cell detection. (Top)

original image; (middle) CNN-mapped pixel
probabilities; (bottom) detected cells. Cell centroids
are labeled by red dots in all images.

convolutionalized model, stitched back
together. Using this optimization, mapping of
the 1577 pixel by 1577 pixel by 41 pixel
volume which was previously
computationally intractable now requires
about 10 minutes on a GPU.

To detect cells, I wrote a python script
using simple computer vision methods. First,
I apply a binary threshold using Otsu’s
method. Next, I perform a binary opening in
order to reduce the miscellaneous isolated
pixels. Third, I cluster pixels by connected
components and remove any clusters which
are too small to be cell bodies; in this case,
clusters with volume smaller than a cell with
radius 5µm. Finally, the centroids are
computed as the center of mass of the
remaining connected components.

7. Evaluation

The problem of cell detection in CLARITY

volumes is somewhat distinct from the image
classification problem addressed in class
because the pure percentage performance of
the CNN is not the main metric for quality.
Instead, the performance that matters is the
precision and recall on the cell detection.

To evaluate the CNN and the cell detection
code, I trained a model using positive and
negative training examples drawn from just
the right half of the ROI, and then evaluated
precision and recall based on the hand labels
in the left half of the ROI. Precision and
recall was found to be 91% and 91%
respectively, which is on par with the best
cell-detection algorithms for calcium imaging
of cell bodies.

8. Reflections and future work

In this project, I have trained a

convolutional neural network to learn pixel-

wise probabilities of cell bodies in a
CLARITY volume. After applying the
learned probability mapping, cell detection
can be achieved using simple computer
vision approaches. As a proof-of-principle, I
demonstrated that this approach can achieve
greater than 90% precision and recall on one
region of the CLARITY volume.

However, this is just the first step towards
achieving a robust, CNN-based cell detection
pipeline that can be run on whole CLARITY
volumes. Two next steps are immediately
apparent. First, it is important to test the
approach at different regions in the
CLARITY volume, as detection in some
regions can be more difficult than others. As
a preliminary test, I ran the CNN mapping
learned from the first ROI on several other
ROIs; without having seen those regions, it
performed quite well on a few, but also did
not perform well on a few. Adding training
examples from those new ROI would fix this
problem. Second, the CNN model should
ultimately be modified to run over 3D input
volumes. Cell detection will be much more
robust with use of 3D volumes; for example,
images containing thick fiber bundles might
fool a 2D mapping if the fibers run
perpendicular to the z-plane, but these fibers
will be easily distinguished from cells with a
3D mapping.

This approach to cell detection has two
particular advantages for CLARITY data.
First, a number of factors influence how cells
look across different regions of the same
CLARITY volume, including imaging
clarity, types of neurons, and expression of
the fluorescent protein gene. Because the
CNN-based mapping learns from the input
training examples, it should be able learn a
common mapping across the whole diversity
of cell morphologies. Second, most standard
cell-detection algorithms perform the
detection in 2D slices. This fails to use the
distinct advantages of the CLARITY imaging
method, which provides z-resolution around

10 times higher than other imaging
approaches.

The primary disadvantage to using a CNN-
based detection approach is that the
algorithm development process is slow. In
particular, training examples must be chosen
meticulously for each region, ensuring that
all types of cell pixels and non-cell pixels are
chosen. Because there is no quick interface
between volume images and the training
example extraction code, this process can
often require a lot of time. (On the other
hand, since the CNN learned extremely
quickly based on just a few examples, it may
be sufficient to input fewer examples but
from much more diverse regions.) Secondly,
applying the learned CNN mapping is quite
computationally intensive, even using a GPU.
To map an entire 500GB CLARITY brain
using the learned CNN, a parallelized
approach over AWS GPU boxes would likely
be required.

References
[1] Chung K. et al. “Structural and molecular

interrogation of intact biological systems.”
Nature. Advance Online Publication 2013
Apr 10.

[2] Tomer R, Ye L, Hsueh B, Deisseroth
K. “Advanced CLARITY for rapid and high-
resolution imaging of intact tissues.” Nature
Protocols. June 2014.

[3] Yongsoo K. et al. “Maping social behavior-
induced brain activation at cellular resolution
in the mouse.” Cell Reports. 2015 January
13.

[4] Ciresan D.C., Giusti A., Gambardella L.M.,
Schmidhuber J. “Mitosis detection in breast
cancer histology images with deep neural
networks.” MICCAI 2013.

