Convolutional Networks in Scene Labelling

Ashwin Paranjape
Stanford

ashwinpp@stanford.edu

Abstract

This project tries to address a well known problem of
multi-class image segmentation of indoor scenes. The
objective is to label every pixel in a scene with the category
of the object it belongs to. We seek to do this in a supervised
setting without the need for manually designed features by
using convolutional networks.

1. Introduction

Multi-class scene segmentation is a well studied problem
in computer vision. While most approaches rely on
various feature selection algorithms, we are investigating
the problem of extending the convolutional neural net
framework to achieve per pixel labeling of a given
scene. We train and test our implementation on the
Stanford background dataset[4]. We present two possible
end-to-end fully convolutional networks for achieving scene
segmentation. The first approach is the one followed by
Farabet et.al. [2] which uses multi-scale convolutional
networks trained on pixel data to extract dense feature
vectors that encode information for labeling each pixel in
an image. In the second approach, we try to propose an
architecture which is like the deconvolutional neural net, but
is trainable.

2. Related Work

Scene segmentation has been approached with variety
of methods in the past. Most methods still rely on
CRF, MRF or similar types of graphical models to ensure
consistency in labelling. Many methods also rely on
pre-segmentation of image into superpixels and extract
features form individual segments to get the most consistent
labels for the image. A few methods in the recent past have
started using convolutional networks to train the network
from end-to-end and and produce a powerful representation
of features [5]]

Our key inspiration was due to work done by Farabet
et.al. on learning hierarchical features for scene labeling

Ayesha Mudassir
Stanford

aysh@stanford.edu

[2] where they train a multiscale convolutional network
on raw pixels and aim to extract dense feature vectors
that encode regions of multiple sizes centered on each
pixel. With this approach they achieve 78.8 % accuracy.
However this method alone does not accurately pinpoint
the object boundaries. = They augment their method
with three different approaches from conventional vision
literature, involving super-pixels, conditional random field
over those superpixels and multilevel segmentation with
class purity criterion. Simply averaging class predictions
over superpixels and using CRFs solves the problem
of pinpointing object boundaries. Finally multilevel
segmentation allows for a richer tree-based segmentation
and optimizes the segmentation process with a global
objective of class purity.

Simonyan’s paper [6] also states that backpropagated
gradients on image are equivalent to using deconvolutional
networks by Zeiler et.al. [[7] wherein, they reverse the layers
and apply them on the generated code. One remarkable
aspect is that they use the maxpooling masks to unpool.
In an attempt to combine the regenerative prowess of
deconvnets with the ability to train on per pixel class labels,
we propose a new network architecture.

3. Approach

The two approaches we followed for image segmentation
are as follows:

3.1. Graph based classification on multiscale
convolutional networks

This is a direct implementation of the approach in
the paper by Fabaret et. al. [2]. There are two
separate tasks in this approach. The first task is to
train a convolutional neural network to learn and extract
multiscale features in an image and the second task is to
use additional supplementary methods such as use of super
pixels, conditional random fields to improve the predictions.
We only targeted the first task in the project. The two tasks
in short are described here

3.1.1 Multiscale feature extraction

This task is concerned with extracting features for further
processing with graph based methods. We require a
transform f : RY — R® where the image patch is a point
in R” and it is mapped to RY where it can be classified
linearly. Convolutional neural nets have the advantage of
learning features useful for this transform. However if
there are pooling/subsampling layers, then they degrade
the ability of the model to precisely locate objects. On
the other hand, without pooling/subsampling layers, the
window considered for convolution is small, offering a
poor observation basis and is unable to capture long range
interactions.

To counter these disadvantages, a multiscale
convolutional network extends the concept of spatial weight
replication to the scale space. From an input image I, a
multiscale pyramid of images X is constructed. Each scale
is treated through Conv-ReLU layers with the same weights
shared across scales. Before the last fully connected layer,
images at all scales are upscaled to the original size. Now
a linear classifier predicts the class label for each pixel
based on upscaled output volumes across different scales.
In another method the linear classifier is simply replaced
by a two layer network. The architecture is as shown in the

Figure[T]

/ (
Laplacian n
- E:‘ :

ixelwise
ion,
Output
(Y ﬁ

Figure 1. Multiscale Convolutional Neural Network Architecture

3.1.2 Scene Labelling Strategies

There are three strategies, each better than the previous one,
which would improve the predictions as obtained from the
multiscale convolutional network.

Superpixels We use the method proposed by [3]] to generate
an oversegmentation of the image. We simply compute the
average class distribution within each superpixel.

Conditional random fields A graph G = (V,E) with
vertices v € V and edges e € E C V' x V. Each pixel is
associated to a vertex and edges are added between every
two neighboring nodes. The CRF energy term is given by

E(l) = Z¢(ai,li)+7 Z W(li, 1)

i€V e,‘,jEE

The unary term ¢(d;,l;) = e °dial(l; # a) Here
l; = argmaxXgecclasses éli,a, a € classes and Eli is the
normalized exponential of the class scores for each pixel
over all classes. . The pairwise term consists of ¥(l;,1;) =
e AIVULA(l; # a), where ||VI||; is the Iy norm of the
gradient of the image I at pixel ¢

Parameter free multilevel parsing A family of
segmentations, in particular a segmentation tree, is analyzed
to automatically discover the best observation level for each
pixel in an image. The segment associated with each node
in the tree is encoded by a spatial grid of feature vectors
pooled in the segment’s region. This is done by means of
a shape-invariant attention function, which is essentially a
mask over the segment followed by pooling over a fixed
size grid to produce a uniform sized descriptor. A classifier
is then applied over the descriptor to produce a histogram
of categories. Impurity is now defined as the entropy of the
historgram. Each pixel is labeled by the minimally-impure
node amongst the ancestors of the pixel in the tree.

3.2. Supervised Convnet-Deconvnet Framework

The above method does not make use of spatial domain
information in its conv-nets. In that approach there are
no pooling layers, however due to independent processing
on smaller scales, the problem of smaller convolutional
windows is partly mitigated. It is however not clear if
it affords the same advantages as a deep convolutional
network with pooling layers. We try to exploit the
advantages of pooling in our convnet and propose the
architecture as shown in Figure 2]

Conv-relu
Input

Conv-relu

Max Pool FC affine

Code

Ssew jood

FC affine

Output

Figure 2. Convolutional-Deconvolutional Neural Network

Architecture

The first part of this architecture is the convolutional
layers, [conv-relu-pool]XN followed by a fully connected
affine layer. At this point, we have the features representing
the image. We call them the code corresponding to
the image. These features would be used to get the
segmentation of the image using the remaining part of
the architecture. The final part of the architecture is the
deconvolutional layers. Again, as before, we have a fully
connected affine layer. We train this architecture such

that the final output after the deconvolutional layers is the
segmented image. We use the pooling mask, as used by
Zeiler et.al. [7] to upscale the data in the deconvolutional
network. Also, on pooling we loose more than 75% of
the data. We need to bring back this information at every
level in order to perform proper per-pixel labeling. For
this purpose, we concatenate the hidden layers of first part
of the architecture to the upscaled hidden layers at every
step. Another advantage of concatenating the outputs of the
Conv-ReLU layers of the first part of the architecture with
the second part of the architecture is that every filter in the
first part of the architecture has two sources of gradients.
Just like the GoogleNet this would make the training go
faster despite the apparent depth of the complete network.

To justify our architecture, if we compare the multiscale
network with the proposed network, we observe that if in
the first part of the network, instead of pooling the output
of the previous Conv-ReLU layer, we simply used the
original image. And similarly in the second part of the
network, instead of feeding the output of upscale layer to the
next Conv-ReLU network, we simply concatenate with the
output of the next Conv-ReLU layer, we get an architecture
which is very similar to a multiscale network.

4. Technical Details

We did not use Caffe or any other deep neuralnet
based framework for our project as there are no predefined
layers in caffe for upscaling as required in the multiscale
network. Similarly, the convnet-deconvnet approach was
quite unique, involving concatenation as well as upscaling,
not available in Caffe. Instead, we started from the
assignment code as the base. The major technical details
in our implentation are listed below:

4.1. Parametric Server

We wish to categorize each pixel in an image to one
of the given classes. The forward and backward passes
for each of the networks were quite slow. Due to this,
training these networks was a difficult task. We solved this
problem by using the parametric server approach as was
used by Google. We trained over a cluster of 20 CPUs.
However, forking the process on multiple CPUs results in a
large memory overhead from creating replicas of processes.
Instead we used the ipython parallel computing library|[[1],
which creates a cluster of python interpreters which require
only the specific data on which each CPU needs to work.
We achieved a speedup of about 20 by using this parametric
server based approach.

4.2. Layer Dictionary

We defined a layer dictionary to easily extend the
architecture to as many layers as required without having to

change the code at all. The dictionary was used to specify
the network architecture to be used and it implemented the
forward and backward passes based on this dictionary. Each
layer could be initialized using different parameters like
weight scale, bias scale, number of filters, filter size, pool
size, pad size, stride size, etc as and when appropriate.

4.3. Max vs Two-norm

We recognized that while we were trying to use the
mask from the pool layer, in the upscale layer, to generate
the larger image, the mask (which is essentially argmax)
is inherently discontinuous. We propose to rectify it by
replacing the maxpool layer with a softer max. Max is
essentially co—norm. We plan to replace it with softer
measures like 2—norm and use these coefficients for the
upscale layer.

5. Experiment

We used the Stanford Background Dataset[4] to test,
train and validate our proposed networks. The Stanford
Background Dataset consists of 715 images having an
approximate size of 320-by-240 pixels, each pixel labelled
into one of the following categories: sky, tree, road,
grass, water, building, mountain, foreground, unknown. In
addition we added one more category: undefined, to take
into account the variable image size: if the image was of
size 300x240, then the last 20 columns of the resultant
image (of size 320x240) were labeled as undefined. Thus,
our goal was to classify each pixel in an image into one
of the 10 categories. We used the first 429 out of the 715
images for training, and equally split up the remaining (143
each) for validation and testing. Although this may appear
to be a small dataset, we are training for each pixel and so,
effectively, the number of train, validation and test points
are 32947200, 10982400 and 10982400 respectively (since
image size is 320x240). To visualize our results, each of the
10 labels was given a unique greyscale color.

At first, we tested and checked if the gradients from both
the network architectures were correct. In the multiscale
approach, we experimented with Gaussian and Laplacian
Pyramids. The laplacian pyramid gave us better results
and we sticked to them from then on. After this, most
amount of time was spent in hyperparameter optimization.
This was difficult because of the complex architecture. We
played with different combinations weight initializations,
window sizes in the convolutional layers, learning rates,
regularization, learning rate decay and momentum to get
the best possible validation accuracies. We started with a
relatively high learning rate and learning rate decay, and a
low momentum to begin with for the first 50 epochs. The
next 20 epochs after these had a smaller learning rate decay
and a greater momentum.

Undefined Unknown Sky Tree Road Grass Water Building Mountain Foreground

Figure 3. Top five segmentation results from multi-scale architecture. (L-R): Input image, Ground truth labels, Output learnt labels

Undefined Unknown Sky Tree Road Grass Water Building Mountain Foreground

Figure 4. Bottom five segmentation results from multi-scale architecture. (L-R): Input image, Ground truth labels, Output learnt labels

0.195

0.190 |-

0.185}

Train accuracies

0.180

0.175}|

0.170

(o] 2 4 6 8 10 12 14 16 18
num epochs

Figure 5. Train accuracy from epcoh 50 to 70

0.205

0.200

0.195|

0.190

Validation accuracies

0.185

0.180

0.175

0 2 4 6 8 10 12 14 16 18
num epochs

Figure 6. Validation accuracy from epoch 50 to 70

We evaluate our results based on per pixel and per
class accuracy. We achieved an average per pixel accuracy
of only 20% on the validation data and 23% on the test
data after training for about 70 epochs. Figure3| and
Figurefd] show the top and bottom five images on the basis
of per pixel accuracies. It was hard to know the exact
reason for such low accuracies. As shown in Figurd3]
the segmentation is quite good and is close to the ground
truth. However, looking at the worst five predictions based
on average accuracies, it appears as though, even though
the boundaries seem to be correct, the class labels are
completely wrong. Figurd7] shows the the cross correlation
between the actual and the predicted labels and Tabld]I]
shows the per class accuracies.

=

[N

—D T QN =0
=) +

@

2 ActuafLabel 5

Figure 7. Cross-correlation prediction matrix between classes (in
log scale)

Class Accuracy
Undefined 0.0
Unknown 00.17
Sky 03.90
Tree 31.94
Road 43.46
Grass 00.02
Water 00.04
Building 41.92
Mountain 0.0
Foreground 11.54

Table 1. Per Class Accuracies

We see that only a few classes are predicted with
accuracies more than 0.1. The rest have very less
accuracies. For example, Tree, Road and Building is
predicted fairly accurately. Whereas grass, water, mountain
and sky have neglibible accuracies. We believe that this
is because of a the training being stuck in a local minima.
Initially it was hard to get more than two dominant predicted
classes. However with careful training, we were able to
expand it to 4 label classes. We hope that with better tuning,
we should be able to improve upon these results.

Another lapse, we believe, was that we could not add a
second convolution layer. The cluster simply crashed after
we did that. Thus we believe we were unable to extract
higher level features from the training data and hence we
were unable to predict other classes.

Although we did implement conv-deconv, we did not get
any good results, mainly because we were limited by the
number of epochs we could execute it for. Even with a
parameter server, and small batch sizes for each CPU, each

CPU required memory in excess of 10GBs and would crash
after some time.

6. Conclusion

We implemented two architectures, one existing
and one novel. We were able to train Multiscale
Convolutional Neural Network Architecture to a fair
degree. However were not successful in training Supervised
Convnet-Deconvnet Framework. We believe that with use
of optimized code for training, we should be able to achieve
satisfactory results.

References

[1] Ipython.parallel. http://ipython.org/
ipython-doc/dev/parallel/l

[2] C. Farabet, C. Couprie, L. Najman, and Y. LeCun.
Learning hierarchical features for scene labeling. Pattern
Analysis and Machine Intelligence, IEEE Transactions on,

35(8):1915-1929, 2013.

(3]

(4]

(5]

(6]

(7]

P. F. Felzenszwalb and D. P. Huttenlocher. Efficient
graph-based image segmentation. International Journal of
Computer Vision, 59(2):167-181, 2004.

S. Gould, R. Fulton, and D. Koller. Decomposing a scene into
geometric and semantically consistent regions. In Computer
Vision, 2009 IEEE 12th International Conference on, pages
1-8. IEEE, 2009.

J. Long, E. Shelhamer, and T. Darrell. Fully convolutional
networks for semantic segmentation. arXiv preprint
arXiv:1411.4038, 2014.

K. Simonyan, A. Vedaldi, and A. Zisserman. Deep inside
convolutional networks: Visualising image classification
models and saliency maps. arXiv preprint arXiv:1312.6034,
2013.

M. D. Zeiler, G. W. Taylor, and R. Fergus. Adaptive
deconvolutional networks for mid and high level feature
learning. In Computer Vision (ICCV), 2011 IEEE
International Conference on, pages 2018-2025. IEEE, 2011.

http://ipython.org/ipython-doc/dev/parallel/
http://ipython.org/ipython-doc/dev/parallel/

