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Abstract

The human brain possesses the remarkable ability to in-
fer depth when viewing a two-dimensional scene, even with
a single-point measurement, as in viewing a photograph.
However, accurate depth mapping from a single image re-
mains a challenge in computer vision. Applications for
single-image depth estimation extend from autonomous ve-
hicles, to satellite data processing, to re-presenting two-
dimensional movies in 3D. While in practice depth can
be measured using stereoscopic imaging or laser range-
finding, in many cases additional measurements are un-
available. However, automated methods suffer from hard-
ware and computation cost.

Humans can very-easily understand the 3D structure of
a photographed scene, even without stereoscopic measure-
ments (just close one eye). Recently Convolutional Neural
Networks (CNNs) have made extensive progress in mimick-
ing the human visual system, and can provide a means to
infer depth cues within a single image.

Herein we attempt to implement the recent work by
Fayao Liu et al[5], using a CNN with adjacency regular-
ization.

1. Introduction

3D scene reconstruction is a problem that has been stud-
ied in depth over many years, however, it is a difficult prob-
lem because of the inherent ambiguity that exists in im-
ages due to the effects of camera projection. Each image
could mathematically represent an infinite number of com-
binations of images along any linear scale of coordinates.
The ability of humans to infer a depth scale within images
is largely due to their ability to extract and weight differ-
ent depth cues within the image [9], based predominately
on prior knowledge of scales of objects within the image.
This system is not something that is easily mimicked by al-
gorithms, as they cannot currently mimic the learned object
recognition and object relationships that the brain is able to
do. However, there has been significant work to create ap-
proaches and appropriate assumptions to make reasonable
inferences from a single monocular image. Liebowitz et

al. studied this problem by assuming some degree of paral-
lelism and orthogonality within architectural images to both
calibrate the camera used to take the image as well as in-
fer the relative scale of points within the image [4]. This
approach allowed the authors to generate three dimensional
models of architectural scenes where it is a reasonable to as-
sume that the ground is orthogonal to the buildings within
the image. Saxena et al. extended this concept to apply su-
pervised learning for Markov Random Field (MRF) models
of depth cues within images to infer depth within an image
assuming that the image was composed of small, connected
planes [8]. In this case, patches of the image were assumed
to provide some information about the image, while neigh-
boring regions and straight lines were assumed to provide
information about the variation that is seen across the depth
field.

With the introduction of CNNs to the computer vision
field, they have begun to be applied outside the classifica-
tion regime to continuous problems. A prominent work in
this area was that completed by Eigen et al. [2]. This work
used interleaved coarse and fine CNNs to provide a global
estimate of the structure of the image that was then adapted
by the properties of the local regions. Building off of this
work, Liu et al. demonstrated work that is at a fundamental
level, quite similar to that presented by Saxen et al. in terms
of assuming connections between neighboring superpixels.
In their work, Liu et al. demonstrate a method of training
two networks to maximize a log likelihood function by min-
imizing two energy functions: one for the euclidian distance
between the actual and predicted depth, and a second for the
cost between neighboring superpixels based on an arbitrary
number of metrics.

2. Theory and Architecture

We begin with the architecture proposed by Liu et al[5],
wherein Nt training images are first segmented into Np su-
perpixels. A windowed region is then taken from around
the centroid of each superpixel, creating Np Patches. Each
of these patches is labeled with a target depth. The total set
of (NtNp) patches comprises our training set.

The training set is then applied to a CNN, configured for
regression using a Euclidean loss. This CNN is referred to
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as the Unary branch.
Simultaneously, the patches from each pair of adjacent

superpixels are passed through a similarity function, re-
ferred to as the Pairwise branch.

The outputs of the unary and pairwise branches are
then passed to a modified loss function, which encourages
similar-looking adjacent patches to share similar predicted
depths. This step is referred to as the Graphcut, or Contin-
uous Random Fields (CRF) minimization block.

A schematic of the system used by [5] is shown in figure
1.

The Conditional Random Fields loss function used in [5]
is given by:

− LogPr(y|x) = −log 1

Z(x)
exp{−E(y, x)} (1)

where the energy function, E, is given by:

E(y, z) =
∑

p

(yp − zp)2 +
∑

p,q

λpq(yp − yq)2 (2)

The first summation is the squared distance between the
evaluated depths, yp, and the true depths, zp. The second
summation is a measurement of the similarity between su-
perpixel p and its adjacent superpixels, q. λ is a matrix (and
is a learned parameter), which maps various similarity func-
tions – euclidean distance by pixel, euclidean distance by
color histogram, and binary pattern difference) – to a single
similarity value. This parameter has the effect of encourag-
ing transitions in depth to occur only at dissimilar pixels.

Of note is that, in the absence of the similarity sidechain
(λ = 0), the energy function reduces to a simple Euclidean
loss:

E(y, z) =
∑

p

(yp − zp)2 (3)

Similarly, in the absence of multiple similarity metrics,
(λ = I), the problem reduces to a conventional graphcut
problem [1].

3. Implementation
Our intent was to develop this topology in the following

phases:

1. Train the unary classifier, following the same topology
as [5], and using transfer learning from PlacesCNN
[10] and a Euclidean loss

2. Remove the Euclidean loss and summing nodes, and
retrain the network using a 1-vs-all Softmax loss

3. Implement the fine-tuning routine using a standalone
graphcut package [1] and a single similarity function

Image Segments

Superpixel Neighbor Graph

Similarity Function

Unitary Network
Joint Loss∑

(dtrue − dset)
2
+ λ

∑
(ytrue − yset)
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Figure 1: Block diagram of the depth regression system
used by Liu et al [5]

4. Time-permitting, implement the graphcut loss and
multiple-similarity sidechain of [5], and compare to
single similarity results

The system was to be implemented using the Caffe [3]
CNN environment, on a well-equipped PC running Ubuntu
14.04, and using an nvidia GTX670 GPU.

Two datasets are commonplace in the literature – the
NYUv2 Indoor Scenes set [6] and the Make3D outdoor
scenes set[7, 8]. NYUv2 includes 1,449 individual 640x480
photos, each with a depth map of the same size, and a stan-
dard training / test split. The set includes indoor scenes
only, from apartments, offices, and classrooms. Make3D
includes 534 images and depth maps of much-higher resolu-
tion (1704x2272), featuring outdoor scenes from around the
Stanford campus. For both sets, ground truth was recorded
using a Microsoft Kinect. We chose to work with the
NYUv2 set initially, for two reasons – the data appeared
to be more-easily preprocessed, and that the Make3D set
truncates infinite depth to 81 meters. Using indoor scenes
only eliminated the need to worry about infinite depth con-
ditions.

3.1. Preprocessing

Prior to training the network within Caffe, there are sev-
eral preprocessing steps, shown in Figure 2, that are re-
quired. These steps, which are described in detail later are
segmentation of the image into superpixels, pixelation of
the depth data on a log scale, and, finally, extraction of im-
age patches around the centroid of each superpixel.

3.1.1 Segmentation

Segmenting each image was accomplished using the SLIC
algorithm, as implemented in SKimage. For the training
set, we segmented each initial 640x480 image into approx-
imately 400 superpixels. The SLIC algorithm targets but
does not guarantee a specific number of superpixels. As
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Figure 2: The preprocessing steps required to produce data necessary for training within Caffe

shown in [5], increasing the number of superpixels on train-
ing incurs a substantial computation penalty, with dimin-
ishing returns. Approximately 300 superpixels appeared to
be a minimum for a visually-pleasing map. After segmen-
tation, we select a square patch around the superpixel cen-
troid. Following [5], this patch was sized to 167x167 pix-
els; however, time allowing, the patch size (in relation to
test image size and number of superpixels) would be a re-
vealing parameter to sweep.

3.1.2 Log Scaling

Each superpixel was paired to a single depth value to use
as a ground truth. We examined three methods of selecting
this value – the true depth at the superpixel centroid; the
mean over the superpixel body; and the mean over the en-
tire windowed patch. The resulting depth maps can be seen
in Figure 3. The selected depth was then discretized using
16 logarithmically-spaced bins, spanning 0.7 to 10 meters.
There were two motivations to discretizing the depth field.
The first is that working in a log domain helps improve scale
invariance, as is used in both [5] and [2]. The second, and
more practical, motivation is that the Caffe data layer frame-
works only accept integers for ground truth labels, despite
being able to work internally as floats. The number of bins
was selected to match the size of the Softmax nonlinearity
within the unary CNN.

3.1.3 Set Normalization

Initial training using achieved a promising 30% accuracy
on both the test and training sets. After visualizing the re-
sults on actual images, however, it was clear that the CNN
learned to always select a single depth, in this case the peak
of the distribution of depths, which can be seen in Fig-
ure 4. Following, we examined the distribution of depths
within the training set, which were found to be highly
nonuniform. Our solution was to create a new training
set with optimally-distributed depth values, by finding the
highest-occuring depth class, and filling in the remaining

Figure 3: Log scaling and depth averaging. The left col-
umn shows the map using center-valued depth selection; the
middle column via averaging over each superpixel; and the
right, averaging over an entire window section.

depths with randomly-selected examples from their respec-
tive classes. Figure 4 shows the initial and final distributions
of depth labels, as well as the equivalent number of epochs
for each depth class (i.e. the average number of times the
training images for each class are repeated).

Finally, each 167x167-pixel patch in the set is rescaled
to fit the 227x227-pixel inputs of the pre-trained network
(from PlacesCNN, itself a derivative of the standard Ima-
geNet CNN [10]) The final training set comprises 310,845
unique patches, which after normalization result in 676,320
patches, each labeled with an integer depth from 1 to 16.
The set occupies approximately 2 GB of hard drive space.

Figure 5a shows the full-frame mean image of the
NYUv2 dataset; Figure 5c shows the mean image of the
training set patches. Note the vertical and horizontal struc-
tures present in the mean image; these are due to a 10-pixel
white border present in the NYUv2 image data, which as-
sures each image has a constant framesize. While we would
expect to see a diffuse field, this is in fact the mean of all
patches that the CNN will see during training.
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Figure 4: Training set distribution, before and after normal-
ization. The red dashed line shows the equivalent epoch
number for each epoch of the entire set.
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Figure 5: Mean images of the training set

4. Training with Euclidean Loss

Figure 9 shows the topology of the unary CNN using
a Euclidean loss. Note that the first five layers are pre-
trained, and are used as a feature-extractor. The follow-
ing layers are similar to that used by [5]; however we add
an additional fully-connected layer, as in [10]. Each fully-
connected layer is followed by a simple ReLU nonlinear-
ity, and is trained with random dropout (50%). Finally,
the output is passed through a Softmax nonlinearity, and
is summed by the last layer, resulting in a single real-valued
output for each patch at the input.

Figure 7 compares the training loss of this network, us-
ing center and superpixel-averaged depths. Note that the
superpixel-averaged version trained more-quickly for the
same training parameters (SGD solver, loss rate=0.001, step
size =5000, gamma = 0.5), which we initially took to indi-
cate a cleaner correlation between patch and depth.

However, figure 8 shows a typical depth prediction from
the convnet, trained for 1 epoch (5000 iterations), on
center-depth versus superpixel-averaged training sets. Note
that the center depth version exhibits far greater variance
in depth, which indicates that perhaps depth averaging oc-
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Figure 6: Error histograms for the Euclidean regressor 6a,
6b: using the learned weights (blue trace in figure 10), and
6c, 6d, with the hardcoded weights.

cludes key features.
When using a Euclidean loss, Caffe offers no provision

for automatic training / test accuracy. In order to quantify
the error beyond simple visual inspection, we classify 10
randomly-selected images from the test set, and inspect the
difference between target and predicted depths. Figure 6
shows a typical distribution of errors using the center-depth
Euclidean CNN. While the fractional error is decent, one
glaring issue is is noticeable in the results: the classifier
generally predicts differences in depth in the appropriate re-
gions, but frequently fails to get the correct polarity – that is,
far regions are mapped to near regions, and similarly nearby
regions are mapped to further distances. This is likely due
to the sign-invariance of the Euclidean loss: (yp − yt)2.

4.0.4 Summing-layer Weights

Our first step in examining the performance of the classi-
fier was to visualize the weights of the output stage. Our
intuition was that the Softmax nonlinearity, which outputs
probabilities ranging from 0 to 1, should operate as a multi-
ple classifier - that is, channel 5 should have high probabil-
ity on depths of 5, and zero elsewhere. In this case, the ideal
output weights would be integer values from 1 to 16. How-
ever, the network instead learned only two nonzero parame-
ters, approximately equal in polarity, as shown in figure 10.
With these weights sent through the Euclidean loss layer,
the network is essentially taking the difference in probabil-
ity of just two channels, while ignoring contributions from
the remaining 14.

We made several attempts to modify the Euclidean net-
work, including presetting the output weights to the ex-
pected ramp; using a different activation; and using no acti-
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Figure 8: Example predictions using the Euclidean-loss
CNN after 5000 iterations. Left is the true depth; the center
column was trained on average depths across each super-
pixel; the right was trained on the center depth only.
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Figure 9: Block diagram of the unary CNN, using a Eu-
clidean loss.

vation function at all. In all three cases, performance using
the Euclidean loss was similar – the classifier generally se-
lected unique regions in the appropriate places, but failed to
accurately estimate the true depth.

5. Softmax and 1-vs-all Classification

We next considered re-training the CNN as a multiple
classifier, rather than a regressor. In this form, the last sum-
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Figure 10: Learned vs Expected weights of the summing
layer, using a Euclidean loss.
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Figure 11: Poor learning performance using a Softmax mul-
tiple classifer loss function. Note the instability and subse-
quent flatlining of the loss function at 2000 iterations

ming layer was removed, resulting in 16 outputs, ranging
from 0 to 1, for each test or train patch. We were opti-
mistic about this architecture for two primary reasons – one,
that Caffe (and CNNs in general) are better-suited to clas-
sification tasks than regression tasks; and two, our selected
graphcut package, PyGCO, required marginal probabilities
for each prediction.

Unfortunately, we never achieved a stable classifier. Fig-
ure 11 shows a typical training run, using center-value
depths, 16 depth bins, and a Softmax loss. In this case the
solver went unstable, before asymptoting to a constant value
2.77. Despite trying different SGD parameters, and even ex-
ploring ADAGRAD and Nesterov solvers, this architecture
would never achieve performance greater than 14%, or two
times the nominal random performance.
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6. Further Work
At this stage, without a reliable multiclass CNN, we have

found it difficult to continue and implement the graphcut
routine. Our current implementation fails to meet the base-
line performance of [5] and [2]; so much so that we believe
there are fundamental errors within our preprocessing sys-
tem. Time-permitted, there are several points remaining to
consider:

1. Investigate the effect of window sizing, as well as data
augmentation in training

2. Confirm that there is a human-recognizable correla-
tion, albeit likely small, between our selected patches
and the true depth

3. Confirm that the Caffe package is correctly-handling
preprocessing steps – mean subtraction, channel flip-
ping, etc.

4. Further investigate different loss functions and nonlin-
earites

5. Develop a more-robust and automated error analysis
system, to better-quantify performance beyond human
inspection

Regrettably, much of our time was spent configuring a
GPU-processing environment, and learning to work with
the Caffe framework, which is currently in its infancy. At
this point we have developed the infrastructure necessary
to experiment, only to have reached our time limit. In
hindsight, working with a less-encapsulated CNN frame-
work such as MatConvNet would have been beneficial, as it
would have required far less data preparation as with Python
and Caffe.

7. Concluding Remarks
At the completion of this stage of this project, several

points come to mind: First, that depth prediction is an inher-
ently ill-posed problem – that is, while a classifying CNN
such as AlexNet is designed to detect the presence of an
object (cat / not cat) etc, and PlacesCNN is designed to rec-
ognize a scene (park, church, cafe), depth prediction is far
less-defined. An object seen by a neural net could be located
at several spaces within the depth plane, and it is unsettling,
at the least, to hope that a trained CNN will learn to recog-
nize depth cues – shadows, horizon lines, etc – rather than
the presence of objects or textures indicating depth. For ex-
ample, tables and chairs were frequently mapped to a con-
stant depth, which matched that of the hardwood floors also
found within our training set. Similarly, flat black objects
such as televisions and computer monitors were frequently
mapped to the furthest distance, possibly due to our zero-
padding step in preprocessing.

However, the architecture of using a primary CNN, com-
bined with a sidechain similarity network and graphcut rou-
tine is compelling for many problems of field extrapolation
- for instance, colorization of black-and-white images, or
inferring temperature or other such parameters from color
images. Once implemented, it would be a rewarding exer-
cise to apply this architecture to these problems.

Our project code, models, and example results
are available on GitHub: github.com/asousa/
DepthPrediction/
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