
CS231N Project Report - Tiny Imagenet Challenge

Arijit Banerjee
Stanford University

arijitb@stanford.edu

Vignesh Iyer
Stanford University

vigansub@stanford.edu

1. Introduction

Image Classification is a major problem in computer
vision today, where rapid strides are being made towards
progress. The idea of using many convolutional layers
which involve heavy computation, and learning over these
layers has drastically improved the performance of image
classification and recognition algorithms around the world.

The ImageNet Large Scale Visual Recognition Chal-
lenge is a benchmark in object classification and detection,
with millions of images and hundreds of object classes. In
the ILSVRC 2014, which is large-scale visual recognition
challenge, almost every highly ranked team used CNN as
their basic framework. The winner GoogLeNet reduced
the mean AP of object detection to 0.439329, and reduced
classification error to 0.06656, the best result to date. Its
network applied more than 30 layers. Performance of
convolutional neural networks, on the ImageNet tests, is
now close to that of humans.

Convolutional neural networks have revolutionized
solutions to learning problems over the last few years.
This has been particularly evident in the area of computer
vision, and in using deep learning to solve problems. There
is a wide database of information available today, including
ImageNet for large image collections, or ShapeNet for large
3-D shape collections which can be used to understand
various problems of different magnitudes of difficulty. For
instance, deep learning has been widely used for shape
reconstruction from an image network using orientation
information [2]. There has also been wide-spread usage of
deep learning in problems such as face recognition [3] and
depth inference [4].

In this project, we have tried to look at understanding
how we could perform recognition of various images using
a deep learning model. We have tried to do this using
various architectures, more specifically the Network In
Network[5] and Alexnet architectures[6]. We have also

tried to understand how we could combine both these
models to perform better than the individual models.

2. Problem Statement
In this class project, the Tiny ImageNet visual recog-

nition challenge, there are 200 different classes. The
training data has 500 images per class, with 50 validation
images and 50 test images, with the validation and training
images provided with labels and annotations. The problem
statement requires us to predict labels, without needing us
to annotate the test images.

In our project, we used convolutional neural networks,
experimenting with various convolution architectures,
and toying around with learning rates, loss functions,
regularization rates, so as to maximize our chances of
accurate image recognition. We also used techniques such
as dropout, and data augmentation to minimize the amount
of overfitting.

In particular, we have adapted in our project ideas of
NIN (Network in Network) and Alexnet architectures. We
shall discuss broadly the salient features of this architecture
in the next couple of sections , following which we shall
discuss how we implemented our approach to solving this
problem, and the results obtained thus.

3. Architectures used
3.1. Network In Network (NIN)

The NIN architecture is a method to replace the Gen-
eralized Linear Model in a Convolutional Neural Network
with a non-linear model instead. The motivation behind
using this architecture is that the convolution filter in a
basic Convolutional Neural Network is a GLM, and that

1

the level of abstraction in this case is fairly low. The idea is
to move to a more non-linear model where the abstraction
capacity of the local model can be boosted.

The NIN architecture employs a learning setup with
the Generalized Linear Model being replaced here by a
micro-network. This structure approximates a general
non-linear function. The multi-layer perceptron idea is
used to generate this micro network, which is further used
as a universal function approximator, and a neural network
trainable by back-propogation. The resulting layer is called
the mlpconv layer, as compared to the linear convolutional
layer. A block diagram of the same is provided in Figure
3.1. Also, a general form of how the Network In Network
model is structured in whole is shown in Figure 3.1.

Figure 1. The Network In Network structure

The MLPConv maps input local patch to the output fea-
ture vector with a MultiLayer Perceptron (MLP) consisting
of multiple fully connected layers with nonlinear activation
functions. While ReLU (Rectified Linear Unit) is still used
as the Activation function in also the multilayer perceptron,
it follows the mlpconv layer here, as opposed to the linear
convolutional layer. As the figure above indicates, there are
fully connected multi-layer perceptron layers in between
the individual set of layers, and this is how the non-linearity
is achieved.

The NIN also uses a global average pooling strategy at
the last mlpconv layer. Instead of adding fully connected
layers on top of the feature maps, averages of each of the
feature maps is computed, and results fed into the softmax
layer. The below figure shows the overall structure of the
NINs. This image shows the stacking of three mlpconv
layers, followed by one global average polling layer. In
traditional CNN, it is difficult to interpret how the category
level information is passed back to the previous layers
through the fully connected layers, and hence it works
as a black box there. But here, global average pooling
enforces correspondences between categories and features,
because of the strong local modeling of the micro network,
and therefore, seems more meaningful and interpretable.

Also, while fully connected layers are typically cases of
overfitting and dropout regularization is vital there, the
global average pooling is a structural regularizer, which
prevents overfitting for the overall structure.

Figure 2. Linear Convolutional Layer as compared to MLPConv

3.2. AlexNet

The AlexNet is a CNN model that uses 8 layers, 5
convolutional layers and 3 fully connected layers. The
last fully connected layer has it’s output connected to
an n− way softmax, which produces a distribution over
the n class labels. The network is designed to maximize
the multinomial logistic regression objective, which is
equivalent to maximizing average across training cases
of the log-probability of correct label under probability
distribution.

The Alexnet has response-normalization layers fol-
lowing the first and second convolutional layers. It also
has max pooling layers following both the response-
normalization layers and the fifth convolutional layer.
These are followed by the three fully connected layers.
It also minimizes overfitting by using dropout and data
augmentation techniques.

Figure 3. Linear Convolutional Layer as compared to MLPConv

The structure of the AlexNet is shown in Figure 3.2
above. This image from the AlexNet paper is representative
of the case where there are 2 GPUs, while in our case we
use only 1 GPU. In the Alexnet, we continue to use ReLU
as the non-linear activation function as in traditional CNNs
and NIN. ReLU does not require input normalization to

2

prevent saturation, but normalization aids generalization.
Therefore, the output of the ReLU non-linearity is further
normalized, and this is called the response-normalization,
which has been discussed earlier.

We attempt to maintain the crop-ratio used in the
Alexnet paper, by using a 58 x 58 cropped image from the
64 x 64 image, as compared to the 224 x 224 image from
the original 256 x 256 in the paper.

Once we had both these models working, we used them
on the Tiny Imagenet challenge, following which we also
tried to do the same using ensembles, and observe if they
perform any better.

4. Motivation and Technical Approach
We now explain the approach we used on the Tiny

Imagenet dataset and explain our motivations for doing so.
Our plan for maximizing accuracy within a limited time
frame was to quickly implement a very deep convolutional
neural network and train it for as long as possible. To
minimize the problem of overfitting, we used dropout and
data augmentation.

During the milestone, we mentioned that we used a
t2.medium EC2 instance for implementing K-Means.
This was no longer feasible since convolutions would be
too slow on CPU. This time, we used GPU optimized
implementations provided by Caffe on terminal.com for
training. In total, we trained 5 models for a total of about
150 hours (for a personal cost of $15, after hitting the
referral bonus limit).

As mentioned in the earlier section, the first thing we
wanted to do was choose an architecture. Since we wanted
to optimize for GPU cost (and thus time), it seemed prudent
to train several architectures for a short amount of time,
and choose the best one and train this for a longer period of
time (although this method might cause slight overfitting on
the validation set). We decided to compare the well known
Network in Network (NIN) and AlexNet architectures
against each other. We used ’prototxt’ files provided in
Caffe’s Model Zoo for training, with minor modifications
(we added cropping and mirroring for data augmentation,
along with changing the size of the final layer to correspond
to the 200 classes we have on Imagenet).

We chose a few different learning rates (in the 0.01
- 0.001 range) and trained our models on the above
architectures. We observed that AlexNet tended to saturate
after a few tens of epochs while NIN continued learning
as evidenced by the training and val accuracy continuing
to increase steadily. After a day of experimenting with
this, we decided to stop training AlexNet and use the best
parameters obtained using NIN to train an ensemble of
classifiers.

An important aspect while training was to figure out
when to drop the learning rate. We noticed that if the
learning rate remained constant for too long, beyond a
point, the training and val accuracy stopped increasing
while the loss kept fluctating. In practice, we noticed that
this happened every few tens of epochs. Since we wanted to
minimize the amount of time spent on training, we thought
that a general policy like ’reduce learning rate every K
epochs’ might end up wasting a lot of time before actually
lowering the learning rate. Thus we manually looked at the
learning rate every few hours and dropped it by a factor
of 10 when we felt that the loss function was not steadily
decreasing any more.

While training NIN, we used cropping (with a
’crop size’ of 48) in 2 of the models and no cropping
in the third model. We enabled mirroring of the training
data in all the models. After training these classifiers, we
combined their results (along with the results of the two
previously trained AlexNet) classifiers into an ensemble
of classifiers. We implemented the ensemble by summing
up scores for each class weighted by the accuracy of the
corresponding classifier on the validation set. We found
out that our ensemble performed best on the validation set
when we used only the 3 models trained using NIN, and it
is the score of this result on the test set that constitutes our
final score.

5. Evaluation and Results
We now describe the main numbers and results along

the way towards our final score. As mentioned for the
milestone, K-Means achieved an error rate of 0.982.

For our first pass (trying out AlexNet and NIN for a
few epochs), the best set of hyperparameters for AlexNet
involved using a Learning Rate of 0.01. This achieved
a validation set accuracy of 0.25 within 20 epochs after

3

which the loss started fluctuating. At this point, the Learn-
ing Rate was dropped to 0.001. Now, the loss function
started steadily dropping again until about 30k iterations.
At this point, the model had an accuracy of about 0.33
but the training and val accuracy showed clear signs of
overfitting (the training loss was decreasing steadily while
the validation loss was not). We decided to stop training
AlexNet at this point.

While training AlexNet, we ran a NIN model on another
machine for the same amount of time. At the time we
decided to stop training AlexNet, NIN had achieved a
greater accuracy on the validation set of 0.35, and was
not showing any signs of overfitting. This could have been
because it was a deeper model than AlexNet (epochs were
talking longer to complete). Thus we decided to continue
running this NIN model and spin up two other versions of
this model with slightly different parameters to create our
ensemble.

The ’prototxt’ file for NIN has a few dropout layers, and
we experimented with parameter values for dropout here.
As mentioned earlier, dropout along with ’crop size’ and
’mirror’ were the parameters we used to prevent overfitting.

All of our models used SGD with Momentum for
gradient descent, with a momentum of 0.9. Snapshots
were stored every 2 epochs so that we could recover from
failures (we ran out of disk once, luckily, this did not create
too many problems). A batch size of 100 occupied about
400MB on the GPU and seemed to work fast in practice,
though we could have probably optimized this a bit more
(since the GPU had a much larger capacity) for faster
training.

While training our ensemble, we dropped learning rates
for each model manually as described previously. The first
drop in learning rate occurred after about 40 epochs for
each model when the val accuracy was about 0.37. After
a few more hours (about 30 epochs), the learning rate
was again dropped (at which time the accuracy was about
0.42) to squeeze out a few more percentage points in val
accuracy. Our best single model achieved a validation set
accuracy of about 0.47.

We submitted each of our models to the online judge,
and received error rates on the test set of about 0.57,
corresponding to an accuracy of 0.43. We are not sure

where this 4% drop in accuracy came from, though we
surmise it could be because of the randomness in the
forward pass (because of cropping and mirroring) present
during training but not during testing.

Finally, we modified our ’prototxt’ file for testing to
output losses rather than class labels. Using this, we built
an ensemble of 5 classifiers (2 AlexNet + 3 NIN). We
added up loss functions (with some hacks to neglect scores
for a particular class if they came from really low ranks)
and used combinations of different classifiers as ensembles.
Our best ensemble used only the 3 NIN models (which
achieved much greater accuracy than the AlexNet models)
and got a final error rate of 0.53 on the online judge,
placing us 4th overall on the leaderboard.

We had a few more ideas for improving our error rate,
but unfortunately at this point we were out of time and GPU
credits, and decided to stop here.

6. Comments and Ideas for Future Work

Below are some comments and ideas we had in mind
towards improving accuracy but could not really get around
to implementing:

• Architecture: The AlexNet architecture is optimized
for 256x256 images on the ImageNet dataset while
the NIN architecture we used was optimized for the
CIFAR-100 dataset, which contains 32x32 images.
Since we were using 64x64 images, we got around this
by changing the kernel size of the final pooling layer in
NIN (and no change in AlexNet). However, our archi-
tecture was now not necessarily optimized for 64x64
images and this might have been something to look at.

• Test with Random Crops: We trained using random
crops, but did not use a variety of random crops at test
time. This would definitely lead to an increase in ac-
curacy, but we ran out of time before we could try this
out.

• PRELU units: In the milestone, we had mentioned
wanting to try out Parametrized Rectified Linear Units
[7], a new kind of RELU unit where the parame-
ter is learned as training proceeds. We made some
slight process on implementing this in Caffe, but could
not figure out how to change parameters easily in the
new layer we were adding. Had we completed imple-
menting this, we might have got faster training rates.
However this may not necessarily have helped much
since our main problem was that our models saturated

4

(though it might have helped in creating more ensem-
bles).

• Effective Ensembling: We did not exploit model wise
bias towards each class while merging ensemble re-
sults. Some kind of EM algorithm to merge results
based on class wise confusion matrices for each model
was something we thought about trying but could not
get around to (also, this isn’t really related to CNNs).

• Distribution of Classes: We expect about 50 images
per class on the test set labels, on average. We thought
about breaking close ties while choosing labels to en-
sure that this holds, but this would not really have
helped. In fact, we calculated the sum of absolute de-
viations of class count from 50 for each class for each
of our submissions and plotted this against test set ac-
curacy, but did not observe much correlation.

References
[1] http://arxiv.org/abs/1502.01852

[2] Scott Satkin, Maheen Rashid, Jason Lin, Martial Hebert
, “3DNN: 3D Nearest Neighbor”, International Journal
of Computer Vision January 2015, Volume 111, Issue
1, pp 69-97

[3] http://arxiv.org/abs/1406.6947

[4] Hu Tian, Bojin Zhuang, Yan Hua, Anni Cai ; “Depth
Inference with Convolutional Neural Network”, VCIP
2014: 169-172

[5] arxiv.org/abs/1312.4400

[6] A. Krizhevsky, I. Sutskever, G.E.Hinton. “ImageNet
Classification with Deep Convolutional Neural Net-
works”, Eletronic Proceedings of Neural Information
Processing Systems. 2012.

[7] http://arxiv.org/pdf/1502.01852.pdf Delving Deep into
Rectifiers: Surpassing Human-Level Performance on
ImageNet Classification

5

