

225

Abstract

We review the state-of-the-art algorithms in

convolutional neural networks for computer vision object
recognition. In particular, we implement an 9-layer
convolutional neural network inspired by Krichevsky’s
ILSVRC2012-winning CNN. We compare the two
networks on Tiny Imagenet, a small slice 10% the size of
the official ImageNet database. We leverage Caffe, an
open-source convolutional network library to assist in
network implementation. Our CNN achieves top-1 error
rate of 69.6%..

1. Introduction

Khrichevsky et al revolutionize the field of computer

vision object recognition research with an implementation
of convolutional neural networks, achieving a 15.3% top-5
error rate at the ILSVRC2012 competition, 10% better
than peer algorithms [1]. Since the inception of
Khrichevsky’s Convolutional Net debut at the
ILSVRC2012 computer vision competition, advancements
in convolutional neural networks have rapidly pushed the
boundaries of performance in computer vision object
recognition. These advancements have been caused in
part from larger datasets datasets to train from, as well as
better hardware to build larger nets, but also, and perhaps
more importantly, due to innovation in algorithms and
models that provide more efficiently-trainable and better
performing machine learning algorithms. Recently,
researcher’s at Google have pushed computer vision to
similar to human vision performance, reaching a 6.67% 5-
attempt classification error rate on the ImageNet dataset
[2].

We build on Khrichevsky’s AlexNet, and optimize it
based on our smaller dataset,, the Tiny Imagenet. We
leverage Caffe, an open-source convolutional neural
network library, written in C++, optimized for GPU-based
computation based on the CUDA library, and modularized
to efficiently develop neural network models [3]. We
trained our models on a single system consisting of 10GB
Ram, 5GB GPU and 1500 cores at 800MHz.

Please follow the steps outlined below when submitting
your manuscript to the IEEE Computer Society Press. This
style guide now has several important modifications (for
example, you are no longer warned against the use of
sellotape to attach your artwork to the paper), so all
authors should read this new version.

1.1. Dataset

As a training dataset, we use the Tiny Imagenet, a
subset of the larger Imagenet. ImageNet is a database of
1.2 million images, partitioned equally into 1000 classes
of images. The Tiny ImageNet, in comparison is a
database of 110,000 images, partitioned equally into 200
classes of images. Of this, we separate the Tiny Imageset
into a training set of 100,000 images, and validation and
testing sets of 5,000 images each.

Given the variable resolution of images, we down-

sampled images into a fixed resolution of 227 X 227
pixels. In addition we performed mean-subtraction on
each pixel of images, calculated based on the training set.
 Finally we performed data augmentation by random
mirror-image flipping.

1.2. Background Concepts

ReLU: Rectified linear units achieve non-linearity
through the equation max(0, x). Because they do not
saturate unlike TanH and sigmoid nonlinearities, they
significantly reduce time to train a neural network.

Fully-connected layer: The standard neural network

layer, in which each neural in the layer is connected to
every neuron in the previous layer.

Convolutional Layers: Convolutional layers share

weights across all neurons in a filter. Each neuron in a
filter takes as input, a local region from the previous
region, in our case 3x3 and 5x5 height and width field
size, along with the entire depth of the previous layer.
 Convolution layers allow the learning of localize field
information, while massively reducing dimensionality.

Local Response Normalization: While ReLU neurons

do not saturate, Khrichevsky et al showed that applying
Local Response Normalization after convolutional

Building on ILSVRC2012-Winning AlexNet for Tiny ImageNet

Benjamin Au

Stanford University
bau227@stanford.edu

226

ReLU’s still boosted generalization and performance [1].
 As such, we apply LRN and find similar modest (~2%)
boost in performance. LRN is calculated as follows: if a(i,
x, y) is the activation of a neuron in kernel i at position (x,
y), then, response-normalized activity b(i, x, y) is:

Local Response Normalization activation equation (1)

Pooling Layers take a small (in our case 2x2) field for

each filter as input and pool the values into singular
output. Pooling layers typically follow convolution layers
and allow for significant dimensionality reduction. In
particular, we leverage max-pooling in our neural network
design.

Nesterov’s Accelerating Gradient. Neural network’s
typically leverage stochastic gradient descent for learning.
 Instead, we use Nesterov’s Accelerating Gradient, which
leverages changes in momentum of the gradient to
accelerate convergence, in theory in O(1/t^2) time as
opposed to O(1/t) of SGD [4]. W(t+1) represents the
change in weight from NAG.

Nesterov’s Accelerating Gradient equation (1)

1.3. Neural Network Architecture

We take inspiration after Khrichevsky’s seminal

ILSVRC2012-winning convolutional neural network and
build a similar net to train in the Tiny ImageNet
Challenge. Our net is 9-layer-deep convolutional neural
network. The first 5 layers are convolution/pooling layers,
followed by 3 fully-connected layers, with a final softmax
layer to measure loss. We apply ReLU non-linearity after
every layer, given it’s usefulness in speeding up training.
 We apply Local Normalization layer after convolution
layer’s 1, 2 and 5 at the recommendation of Khrichevsky,
expecting marginal improvement in performance. We
apply 50% dropout after each FC layer, in order to
mitigate issues of overfitting. Due to GPU memory
constraints, we limit the number of filters in each
convolution layer to 96. We attempt a strategy of
maintaining as much pixel information by keeping field
size small in each convolution layer. After balancing GPU
memory requirements, we choose 5X5 for convolution one

and two, and 3x3 for convolution layers 3 - 5. Zero
padding and stride are chosen to maintain input height and
width through each convolution layer. Training
Parameters

Following recommended best practices, we use learning
rate of 0.01, with a stepwise learning-rate reduction policy
of 10% per epoch. We leverage nesterov’s accelerating
gradient instead of SGD, allowing us to achieve more
rapid convergence, using momentum parameter of 0.9 and
weight decay of 0.0005. During prediction, we
oversample by averaging predictions over 10 sample
predictions based on cropping the sample image in each
corner as well as the center, and then performing similar to
the mirror image. Modest parameter tuning was
performed, but did not provide substantial improvements
to the above.

1.4. Performance and Measurement

To measure performance, we measure single-guess

accuracy on the testing set. Our best parameters achieved
top-1 error rate of 69.6% accuracy on the test set. While
this is significantly lower than Khrichevsky’s model, we
also had a fraction of testing data to train on. In addition,
our net is able to achieve learning significantly above the
random guess of 99.5%.

1.5. Conclusion

Convolutional neural networks are also powerful
machine learning paradigm for computer vision object
classification. In this study, we take after the seminal
ILSVRC-winning convolutional network designed by
Khrichevsky et al. We achieved substantial performance
at 69.6%, though not near the state-of-the-art (GoogleNet
has achieved top-5 error rate of 6.67%). We leverage
Caffe, an open-source, GPU-enabled CNN development
library that allows for rapid design and testing of CNN
models.

References
[1] Alex Krizhevsky, Ilya Sutskever, and Geoff Hinton.

Imagenet classification with deep convolutional neural
networks. In Advances in Neural Information Processing
Systems 25, pages 1106–1114, 2012.

[2] Szegedy, Christian, et al. "Going deeper with convolutions."
arXiv preprint arXiv:1409.4842 (2014).

[3] Jia et al. Caffe: Convolutional Architecture for Fast Feature
Embedding. arXiv1408.5093. June 2014.

[4] Karpathy et al. CS231n: Convolutional Neural Networks
for Visual Recognition. 2015.
 http://cs231n.github.io/convolutional-networks/

