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Abstract 

 
We review the state-of-the-art algorithms in 

convolutional neural networks for computer vision object 
recognition.  In particular, we implement an 9-layer 
convolutional neural network inspired by Krichevsky’s 
ILSVRC2012-winning CNN.  We compare the two 
networks on Tiny Imagenet, a small slice 10% the size of 
the official ImageNet database.  We leverage Caffe, an 
open-source convolutional network library to assist in 
network implementation.  Our CNN achieves top-1 error 
rate of 69.6%.. 
 

1. Introduction 
 
Khrichevsky et al revolutionize the field of computer 

vision object recognition research with an implementation 
of convolutional neural networks, achieving a 15.3% top-5 
error rate at the ILSVRC2012 competition, 10% better 
than peer algorithms [1].  Since the inception of 
Khrichevsky’s Convolutional Net debut at the 
ILSVRC2012 computer vision competition, advancements 
in convolutional neural networks have rapidly pushed the 
boundaries of performance in computer vision object 
recognition.  These advancements have been caused in 
part from larger datasets datasets to train from, as well as 
better hardware to build larger nets, but also, and perhaps 
more importantly, due to innovation in algorithms and 
models that provide more efficiently-trainable and better 
performing machine learning algorithms.  Recently, 
researcher’s at Google have pushed computer vision to 
similar to human vision performance, reaching a 6.67% 5-
attempt classification error rate on the ImageNet dataset 
[2]. 

 
We build on Khrichevsky’s AlexNet, and optimize it 
based on our smaller dataset,, the Tiny Imagenet.  We 
leverage Caffe, an open-source convolutional neural 
network library, written in C++, optimized for GPU-based 
computation based on the CUDA library, and modularized 
to efficiently develop neural network models [3].  We 
trained our models on a single system consisting of 10GB 
Ram, 5GB GPU and 1500 cores at 800MHz. 

Please follow the steps outlined below when submitting 
your manuscript to the IEEE Computer Society Press. This 
style guide now has several important modifications (for 
example, you are no longer warned against the use of 
sellotape to attach your artwork to the paper), so all 
authors should read this new version. 

1.1. Dataset 

As a training dataset, we use the Tiny Imagenet, a 
subset of the larger Imagenet.  ImageNet is a database of 
1.2 million images, partitioned equally into 1000 classes 
of images.  The Tiny ImageNet, in comparison is a 
database of 110,000 images, partitioned equally into 200 
classes of images.  Of this, we separate the Tiny Imageset 
into a training set of 100,000 images, and validation and 
testing sets of 5,000 images each. 

 
Given the variable resolution of images, we down-

sampled images into a fixed resolution of 227 X 227 
pixels.  In addition we performed mean-subtraction on 
each pixel of images, calculated based on the training set. 
 Finally we performed data augmentation by random 
mirror-image flipping. 

1.2. Background Concepts 

ReLU:  Rectified linear units achieve non-linearity 
through the equation max(0, x).  Because they do not 
saturate unlike TanH and sigmoid nonlinearities, they 
significantly reduce time to train a neural network. 

 
Fully-connected layer: The standard neural network 

layer, in which each neural in the layer is connected to 
every neuron in the previous layer. 

   
Convolutional Layers: Convolutional layers share 

weights across all neurons in a filter.  Each neuron in a 
filter takes as input, a local region from the previous 
region, in our case 3x3 and 5x5 height and width field 
size, along with the entire depth of the previous layer. 
 Convolution layers allow the learning of localize field 
information, while massively reducing dimensionality. 

 
Local Response Normalization: While ReLU neurons 

do not saturate, Khrichevsky et al showed that applying 
Local Response Normalization after convolutional 
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ReLU’s still boosted generalization and performance [1]. 
 As such, we apply LRN and find similar modest (~2%) 
boost in performance.  LRN is calculated as follows: if a(i, 
x, y) is the activation of a neuron in kernel i at position (x, 
y), then, response-normalized activity b(i, x, y) is: 

 
Local Response Normalization activation equation (1) 

 
Pooling Layers take a small (in our case 2x2) field for 

each filter as input and pool the values into singular 
output.  Pooling layers typically follow convolution layers 
and allow for significant dimensionality reduction.  In 
particular, we leverage max-pooling in our neural network 
design. 

 
Nesterov’s Accelerating Gradient.  Neural network’s 
typically leverage stochastic gradient descent for learning. 
 Instead, we use Nesterov’s Accelerating Gradient, which 
leverages changes in momentum of the gradient to 
accelerate convergence, in theory in O(1/t^2) time as 
opposed to O(1/t) of SGD [4].  W(t+1) represents the 
change in weight from NAG. 

 
 
Nesterov’s Accelerating Gradient equation (1) 
 
 

1.3. Neural Network Architecture 

 
We take inspiration after Khrichevsky’s seminal 

ILSVRC2012-winning convolutional neural network and 
build a similar net to train in the Tiny ImageNet 
Challenge.  Our net is 9-layer-deep convolutional neural 
network.  The first 5 layers are convolution/pooling layers, 
followed by 3 fully-connected layers, with a final softmax 
layer to measure loss.  We apply ReLU non-linearity after 
every layer, given it’s usefulness in speeding up training. 
 We apply Local Normalization layer after convolution 
layer’s 1, 2 and 5 at the recommendation of Khrichevsky, 
expecting marginal improvement in performance.  We 
apply 50% dropout after each FC layer, in order to 
mitigate issues of overfitting.  Due to GPU memory 
constraints, we limit the number of filters in each 
convolution layer to 96.  We attempt a strategy of 
maintaining as much pixel information by keeping field 
size small in each convolution layer.  After balancing GPU 
memory requirements, we choose 5X5 for convolution one 

and two, and 3x3 for convolution layers 3 - 5.  Zero 
padding and stride are chosen to maintain input height and 
width through each convolution layer.  Training 
Parameters 

 
Following recommended best practices, we use learning 
rate of 0.01, with a stepwise learning-rate reduction policy 
of 10% per epoch.  We leverage nesterov’s accelerating 
gradient instead of SGD, allowing us to achieve more 
rapid convergence, using momentum parameter of 0.9 and 
weight decay of 0.0005.  During prediction, we 
oversample by averaging predictions over 10 sample 
predictions based on cropping the sample image in each 
corner as well as the center, and then performing similar to 
the mirror image.  Modest parameter tuning was 
performed, but did not provide substantial improvements 
to the above. 

 

1.4. Performance and Measurement 

 
To measure performance, we measure single-guess 

accuracy on the testing set.  Our best parameters achieved 
top-1 error rate of 69.6% accuracy on the test set.  While 
this is significantly lower than Khrichevsky’s model, we 
also had a fraction of testing data to train on.  In addition, 
our net is able to achieve learning significantly above the 
random guess of 99.5%. 

 

1.5. Conclusion 

Convolutional neural networks are also powerful 
machine learning paradigm for computer vision object 
classification.  In this study, we take after the seminal 
ILSVRC-winning convolutional network designed by 
Khrichevsky et al.  We achieved substantial performance 
at 69.6%, though not near the state-of-the-art (GoogleNet 
has achieved top-5 error rate of 6.67%).  We leverage 
Caffe, an open-source, GPU-enabled CNN development 
library that allows for rapid design and testing of CNN 
models. 
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