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Abstract

The report introduces the problem, the method I used,
the running results and my analysis. To do scene pars-
ing on the SIFT Flow sub-dataset, 1 implemented several
models, from the simplest convolutional neural networks to
the pre-segmentation based laplacian pyramid multi-scaled
convolutional neural networks. I constructed these models
by starting from a base model and gradually complicating
it by adding pyramid or pre-segmentation. Finally I tested
these models, compared their results and drew some con-
clusions from it.

1. Introduction

The problem I investigate is scene parsing, also known
as full-scene labeling, i.e. labeling each pixel in the image
with the category of the object it belongs to. It is impor-
tant for understanding the meaning of an image. This prob-
lem has been approached with kinds of methods in recent
years. These methods can be classified to be two categories,
non-parametric methods and learning-based methods. Non-
parametric method is mainly to transfer the label from ex-
isting neighbor images in training data to an image in test
data based on dense scene alignment[4] or superpixels[6].
As for learning-based methods, more and more methods are
using neural network or deep learning. Some methods use
small convolutional neural network as feature extractor and
further use superpixels, CRF model, or optimal purity cover
to do pixel-wise classification[2]. Some methods use deep
fully convolutional networks, upsampling and multi-scale
predictions fusing to get dense prediction.[3]]

2. Problem statement

I used a subset of the SIFT Flow dataset to do scene
parsing. The SIFT Flow dataset consists of 2,688 im-
ages(256*256) with pixel labels for 33 semantic cate-

gories(”building”, “grass”, “tree”, etc.) and 3 geometric
categories("horizontal”, “’vertical”, and “’sky”). The dataset

is split in 2,488 training images and 200 test images. As
geometric categories are kind of trivial compared to the se-
mantic categories, I only focused on predicting semantic
categories in this project. Due to limitation of computer
memory and running time, I extracted a subset from the
complete SIFT Flow dataset. The subset consists of 360
images(256*256) which are split into 273 training images,
60 validation images and 27 test images. After trained, the
model is supposed to output pixel semantic labels for the
test images. By comparing the results with ground truth,
we can see how this model works.

The evaluation metrics I use includes per-pixel accu-
racy and average per-class accuracy. Per-pixel accuracy is
defined as the fraction of the number of pixels classified
rightly over the number of pixels to be classified in total.
Average per-class accuracy is defined as the average of per-
pixel accuracy of all the classes existing in the dataset (This
may be smaller than 33 since not all the classes will show
up in a part of images). The per-pixel accuracy of one class
is the fraction of the number of pixels belonging to the class
that are classified rightly over the number of all the pixels
belonging to that class.

Some state-of-the-art performances evaluated by per-
pixel accuracy and average per-class accuracy on SIFT
Flow dataset is listed in Table 1. They are not very com-
parable with my results on the sub-dataset considering that
I'use much less training data and less testing data than these
papers. It can be an approximate guide but not too much.
Besides, my objective is mainly comparing the results be-
tween the different models I implemented, and gaining in-
teresting result and valuable intuition from the comparison,
instead of just working for higher and higher performance.

3. Technical Approach

I tried mainly four kinds of models. The first model is
a naive Fully Convolutional Neural Network with an up-
sampling layer and a pixel-wise softmax classifier. The sec-
ond model combines RGB-YUV conversion and laplacian
pyramid with the ConvNet similar as the the first one. The
third one uses the former two models to extract features and



Method \ per-pixel acc. | ave. per-class acc. ‘
Liu et al.[4] 74.75 -

Tighe et al. [6] 76.9 29.4
Farebeat et al. [2] 1 72.3 50.8
Farebeat et al. [2] 2 78.5 29.6

Long et al. [5]] 85.1 51.7

Table 1. Results on SIFT Flow. Liu is a non-parametric label trans-
fer method via dense scene alignment. Tighe is a non-parametric
label transfer method via superpixels. Farebeat is a multi-scale
convnet trained with two sampling methods: balanced frequen-
cies(1), natural frequencies(2).

’ layers \ input size \ output size ‘
conv7-16 N x 3 x 256 x256 | N x 16 x 256 x 256
relu N x 16 x 256 x 256 | N x 16 x 256 x 256
pool2 N x 16 x 256 x 256 | N x 16 x 128 x 128
conv7-32 N x 16 x 128 x 128 | N x 32 x 128 x 128
relu N x32x 128 x 128 | N x 32 x 128 x 128
pool2 N x32x128x 128 | N x 32 x 64 x 64
upsampling | N x32x 64 x64 | N x 32 x 256 x 256
conv1-33 N x 32 x 256 x 256 | N x 33 x 256 x 256

Table 2. Architecture of FCNN for model 1

feed the features to a pre-segmentation-based small convo-
lutional neural network. The fourth model essentially has
the same architecture with the third one. However it is not a
combination of pre-trained model with a small ConvNet but
a unified model that can be trained together.

3.1. Model 1

Model 1 is a fully convolutional neural network(FCNN).
The data belonging to the training dataset, validation dataset
and test dataset are all preprocessed(zero-centered) by sub-
tracting the mean of training images before fed into the
FCNN. Comparing to ordinary CNNs, FCNN converses all
the affine layers to be convolutional layers, hence FCNN
can operate on an input of any size and produce an output
of corresponding size. For pixel-wise dense classification,
we need the size of output to have exactly the same spa-
tial size with the input (only different in channel size). The
architecture of my FCNN is in Table 2.

I realized the upsampling layer as a backwards strided
convolution process. For example, if I want to upsample
an image by 4 times, it is in fact the backward process of
convolution with filter size being 4 x 4 and stride being O.
By realizing the upsampling layer with this method we can
also learn the upsampling weight matrix during the train-
ing process. Suppose the input is a four-dimensional array
of size N x C x H x W, where N is the image number
dimension, C is the channel or feature dimension, and H
and W are spatial dimensions. The output is an array of

size N x C' x H' x W’. We need to upsample the input
by d times, where d is an integer. So H' = d x H and
W' = d x W. The upsampling matrix M will have size of
C x C'" x 4 x 4. For the n'" input data at pixel (h, w), we
can compute
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which is an array with size of 1 x C’ x 4 x 4. In total we
can get N x H x W such kind of arrays. By concatenating
those arrays according to the same spatial relationship as
the input, we can get the output.

Since the last layer of the FCNN consists of 33(cor-
responding to the number of semantic classes) 1 x 1 fil-
ters(padding O, stride 1), after the conv1-33 layer, for each
input image, we get 33 maps and each map has the same
spatial size with the input image. The 33 values at each
pixel location are the scores corresponding to the 33 cate-
gories of that pixel. Then we use the multiclass cross en-
tropy to form the data loss, which leads to a pixel-wise soft-
max classifier. Suppose the scores of categories a for a pixel
118 8; 4. Then the normalized predicted probability distri-
butio for the pixel is
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The loss for each pixel is measured by
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where p; , is the true target probability distribution of pixel
1: piq = 1if pixel i is labeled a, and O otherwise. Then the
total data loss is
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After adding 12-norm regularization, we get the total loss.
By minimizing the loss through mini-batch gradient de-
scent, we can get the weight of the network. When pre-
dicting, we set the category of pixel ¢ to be
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3.2. Model 2

Model 1 predicts the category of a pixel only based on
the neighbor pixels. But sometimes faraway pixels can also
influence the prediction result. Multiscale convnet can solve
this problem. First I did a color space conversion from RGB
to YUV. Since it is approximately a linear transformation
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Figure 1. Structure of Laplacian Pyramid

layers output size

conv7-16 N x 16 x 256 x 256
relu N x 16 x 256 x 256
pool2 N x 16 x 128 x 128
conv7-16 N x 16 x 128 x 128
relu N x 16 x 128 x 128

pool2 N x 16 x 64 x 64
upsampling by 4 times | N x 16 x 256 x 256
convl-33 N x 33 x 256 x 256

Table 3. Architecture of FCNN for model 2.1

I think this doesn’t change the total model space, but this
may make it easier or harder to find a better solution. After
the conversion, I transform the images into three scales (in
octaves) through a Laplacian pyramid, whose structure is
shown in Figure 1. Then the Y, U and V channels of each
scale in the pyramid are independently locally normalized,
such that each local 8 x 8 patch has zero-mean and unit
variance.

3.2.1 Model 2.1

For this model we only use the first scale of the laplacian
pyramid, i.e. LO in Figure 1, to be input for a FCNN similar
to that in Model 1. LO has the size of NV X 3 x 256 x 256.
The architecture is shown in Table 2.

3.2.2 Model 2.2

Each scale of the laplacian pyramid is fed to one FCNN al-
most the same as that in Model 2.1. LO is fed to a FCNN
exactly the same as that in Model 2.1 while the FCNNs that
L1 and L2 are fed into are only different in the upsampling
layer. L1 and L2 are fed into FCNNs with “upsampling by 8
times” and “upsampling by 16 times” respectively. Weights
for the same layers are shared between the three FCNNs.
Since different input sizes correspond to different upsam-
pling sizes, the three FCNNs all output score arrays of the
same size, which is N x 33 x 256 x 256. Then they are
added together to be the final score and used to compute the
multiclass cross entropy data loss.

layers output size

conv5-32 N x 32 x 256 x 256
relu N x 32 x 256 x 256
convl-33 N x 33 x 256 x 256
pre-segmentation | N x 33 x 256 x 256

Table 4. Architecture of FCNN for model 2.1

3.3. Model 3

Predicting the category of pixel independently may get
result which lacks spatial consistency. We will use pre-
segmentation (one kind of superpixel) to solve this prob-
lem. First we get segmentations for all the images in our
dataset with the method in [[1]]. With the method, we can set
a parameter to determine how fine the output segmentation
is.

We can get features from the pre-trained models above.
For Model 1 and Model 2.1, the output of upsampling lay-
ers(with size of N x 32 x 256 x 256 and N x 16 x 256 x 256
respectively) are features we need. For Model 2.2, we get
the features(with size of NV x 48 x 256 x 256) by concate-
nating the outputs(with size of NV x 16 x 256 x 256) of up-
sampling layers of the three FCNNs together. The features
all has the same image number dimension and spatial di-
mension as the input. Then we fee the features into a small
ConvNet, whose architecture is in Table 4.

According to the pre-segmention, we have got some idea
about whether some pixels belong to one group or not. In
the pre-segmentation layer, we compute the average score
of the pixels belonging to one group and assign the average
score to be the score of every pixel belonging to the group.
Then we can compute the cross entropy data loss based on
the averaged scores.

By using different pre-trained models to get features, we
construct different model. Model 3.1, Model 3.2, Model 3.3
uses features from pre-trained Model 1, Model 2.1, Model
2.2 respectively.

3.4. Model 4

Model 4 uses the same architecture as Model 3 but it
trains the whole model simultaneously instead of train a part
of model to extract features and then train another part of
model to get scores from the features. Considering Model
3.1 has higher performance than Model 3.2 and Model 3.3.
I only implemented Model 4.1, corresponding to Model
3.1, whose architecture is shown in Table 5. I trained one
Model 4.1 with random initialization and another one with
the weight parameter from Model 3.1(a.k.a. warm start).

4. Results

The per-pixel accuracies and average per-class accura-
cies on test data of these models mentioned above are listed



layers

input size

output size

conv7-16
relu
pool2
conv7-32
relu
pool2
upsampling
conv5-32
relu
convl-33
pre-seg

N x 3 x 256 x 256
N x 16 x 256 x 256
N x 16 x 256 x 256
N x 16 x 128 x 128
N x 32 x 128 x 128
N x 32 x 128 x 128
N x 32 x 64 x 64
N x 32 x 256 x 256
N x 32 x 256 x 256
N x 32 x 256 x 256
N x 33 x 256 x 256

N x 16 x 256 x 256
N x 16 x 256 x 256
N x 16 x 128 x 128
N x 32 x 128 x 128
N x 32 x 128 x 128
N x 32 x 64 x 64
N x 32 x 256 x 256
N x 32 x 256 x 256
N x 32 x 256 x 256
N x 33 x 256 x 256
N x 33 x 256 x 256

Table 5. Architecture of FCNN for model 4.1

| Method | per-pixel acc. | ave. per-class acc. |
Model 1 0.4122 0.0803
Model 2.1 0.4511 0.0843
Model 2.2 0.4255 0.0792
Model 3.1 0.5783 0.1108
Model 3.2 0.5272 0.1036
Model 3.3 0.4168 0.0769
Model 4.1 0.4459 0.0866
Model 4.1(warm start) 0.5853 0.1117

Table 6. Performance on test data.

in Table 6.

From the results we can see that for every model, the
per-pixel accuracy is much higher than average per-class
accuracy. This is because the data-loss focuses on per-pixel
accuracy. The model is trying to predict the pixels which
belong to “BIG” class rightly and doesn’t care about the ac-
curacy of “SMALL?” class.

5. Analysis
5.1. upsampling layer

In Model 4.1, the upsampling matrix has size of 32x32x
4 x 4. The visualization of the 32 4 x 4 matrix correspond-
ing to the first channel of input and 32 channels of output
respectively is shown in Figure 2. The visualization of the
32 4 x 4 matrix corresponding to the 32 channels of input
and first channel of output respectively is shown in Figure 3.
As the upsampling layer is in working on high-dimensional
feature space. The visualization is kind of abstract. But at
least we can see that the layer does give degree of freedom
to the whole model. It actually make the process of upsam-
pling learnable.

5.2. multi-scale convnet

My expectation is that the model using multi-scale lapla-
cian pyramid should outperform the simple FCNN model.

Figure 2. upsampling weight corresponding to the first channel of
input and 32 channels of output

Figure 3. upsampling weight corresponding to the 32 channels of
input and first channel of output

From the results of Model 1 and Model 2.1, it is true. How-
ever, from the result of Model 3.1 and Model 3.2, it is false.
Model 1 uses the information of the raw pixel itself while
Model 2.1 uses LO as input and mainly utilized the high-
frequency information around a pixel to determine its cat-
egory. The result pre-segmentation improves the perfor-
mance of Model 1 more than that of Model 2.1 may be very
data-dependent. Let’s look at a picture Model 3.1 classified
poorly in Figure 4 ~10. Figure 4 is the picture and Figure 5
is the pixel-wise classification ground truth. Different loca-
tions of small sub-pictures represents different categories.
Figure 6 is the pre-segmentation for the picture. Compar-
ing Figure 5 and 6 we can find that the pre-segmentation
fits quite well with the ground truth, which means this pre-
information is really able to help. Figure 7 ~ 10 are the



Figure 4. example picture

Figure 5. ground truth

Figure 6. pre-segmentation of example picture

classification result of Model 1, Model 2.1, Model 3.1 and
Model 3.2 respectively, and the corresponding per-pixel ac-
curacy is in the name of figures. We can see that the results
of Model 1 and Model 2.1 are essentially similar to each
other but the pixel classes are more diffuse in the result of
Model 1. However, the specific number of pixels belonging
to different groups will affect the result of Model 3.1 and
Model 3.2. Hence Figure 9 and 10 have huge difference.
We can see that for this specific example Model 3.2 has
better performance than Model 3.1, while the total test ac-
curacy of Model 3.2 is lower than that of Model 3.1, which
means the result is actually data-dependent, or maybe more
precisely feature-dependent. Within these test images, more
images’ classification results, essentially the feature maps,
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Figure 7. classification result of Model 1, per-pixel accuracy
0.3513

|

Figure 8. classification result of Model 2.1, per-pixel accuracy
0.3772

Figure 9. classification result of Model 3.1, per-pixel accuracy
0.1787

Figure 10. classification result of Model 3.2, per-pixel accuracy
0.3837



of Model 1 collaborate better with pre-segmentations than
that of Model 2.1, not like the example above.

Besides, we can see that Model 2.1 outperforms Model
2.2 here. However, in fact, Model 2.2 includes Model 2.1.
On the one hand, this means the Model 2.2 is harder to be
trained well. This may be caused by overfitting. Because
there are more parameters it can adjust to gain low loss and
high training accuracy, the model is easier to stuck in some
point where training accuracy looks good but in fact rely-
ing too much on specific data. We could try further tuning
the training parameter of Model 2.2 to see if the results can
be better or try data augmentation to see it will work. For
pixel-wise dense classification, data augmentation is kind of
different with whole-picture classification. But we can still
use random crops(on both input image and ground truth) or
color jittering. On the other hand, this also means that for
the dataset we use, high frequency information(L0) seems
to be more useful than low frequency information(L2). It’s
kind of intuitive because edge and contour are important for
segmentation.

5.3. pre-segmentation and self-consistency

Adding pre-segmentation is able to improve self-
consistency and probably able to improve both per-pixel ac-
curacy and average per-class accuracy. We can see this very
clear from the example above.(Figure 4 ~ 10) But when
I run the program, I find that it is easier to stuck around
some not-very-good point in the process of training. By
“stuck” I mean that the training accuracy and validation ac-
curacy stay the same. A good solution to this problem is:
not to run too many iterations one time, but run many times.
Since each time we run the program, we use random initial-
ization, which can lead us to different stuck point. Among
these points, we can find a good one.

Besides, we notice that Model 3.3 has slightly worse per-
formance than Model 2.2, which means pre-segmentation
even make things worse.I think since multi-scale model tries
to capture the influence of a pixel?s far-neighbor-pixels on
its category, it should indeed be harder to cooperate with
pre-segmentation.

5.4. pre-training vs. big model

We can see that Model 3.1 outperforms Model4.1 al-
though Model4.1 includes model3.1. On the one hand,
Model 4.1 is deeper and harder to find proper hyperparam-
eters. On the other hand, model4.1 may rely too much on
pre-segmentation and hence its optimal result for training
data is harder to generalize for testing data. Besides, due
to limit of memory, the batch-size is only 1 or 2, which
may be worse for Model 4.1. Because of the generalization
hardship, when the weight changed after some SGD steps,
the training accuracy even drops a lot. But we can see that
warm start did help a lot. Although warm start doesn’t give

us much better performance, at least it proves that the big
model doesn’t overfit and it can approach some good point.
Besides, it gives us a way to train big model in the future.
We can first split big model to small models and train them
separately. Then we can use the pre-trained results to be a
warm start for the big model.
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