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Abstract

In this paper, we investigate the problems of human pose
estimation and activity classification using a deep learning
approach. We constructed a CNN to address the regression
problem of human joint location estimation, and achieved a
PDJ score of about 60%. Furthermore, using weight initial-
izations from an AlexNet trained to classify on ImageNet,
we trained a deep convolutional neural network (CNN) to
classify images of humans based on the activity the person
is performing. For this task of activity classification, we
achieved a classification accuracy of 80.51% across 20 ac-
tivity categories. Using our relatively simple models, we
were able to produce results for human pose estimation that
beat those of local detectors, which demonstrates the power
of CNNs in challenging visual recognition tasks.

1. Introduction

The problem of human pose estimation involves the
identification of the location of keypoints of the body, which
includes major body parts and joints. There are various ap-
plications associated with this problem, such as action clas-
sification and body movement prediction. The identification
of body keypoints has proved to be a challenging problem
due to small joints, occlusions, and the need to capture con-
text [10].

Convolutional neural networks (CNNs) have had re-
markable success recently on image classification and ob-
ject localization problems. They are very similar to ordinary
neural networks in that they are made up of neurons with
learnable weights and biases. However, neural networks
don’t scale well to larger images. Each neuron in a layer
is fully connected to all the neurons in the previous layer,
so we quickly generate a huge number of parameters and
end up overfitting on the training set. CNNs take advantage
of the fact that the input consists of images, so they con-
strain the architecture in a more sensible way which vastly
reduces the number of parameters.

Figure 1. Example human pose trees.

CNNs are appealing for human pose estimation for two
reasons. First, there’s no need to explicitly design feature
representations and detectors for parts, because a model
and features are learned from the data. Second, the model
learned is holistic, where the final joint estimates are based
on a complex nonlinear transformation of the full image, as
opposed to local detectors whose reasoning is constrained
to a single part and can only model a small subset of inter-
actions between body parts.

Here are just a few of the challenges in predicting human
pose coordinates: the foreshortening of limbs, occlusion of
limbs, rotation and orientation of the figure, and overlap of
multiple subjects. Examples of especially challenging poses
to annotate can be seen in Figure 2.

Figure 2. Difficult poses to annotate: rotation, foreshortening, oc-
clusion, and multiple figures

This variability in the input form suggests that the holis-
tic reasoning provided by CNNs may be a powerful strategy.
In this project, we explore different CNN architectures for
modeling human pose estimation and activity classification.
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1.1. Problem Statement

Our problem consists of two tasks: human pose estima-
tion and action classification. For pose estimation, our net-
work takes as input a raw image and outputs a vector of
coordinates of the body keypoints. We aim to identify x-
y pixel coordinates for 14 body joints (as depicted in Fig-
ure 3). We train a regression CNN that minimizes loss as
defined in Section 3.2.

For the latter problem, we aim to label the images based
on activity category (20 classes, e.g. winter activity) and
specific activity (410 classes, e.g. downhill skiing).

Figure 3. A depiction of the 14 joint keypoints we aim to identify.

2. Related Work
CNNs have historically been used for classification

tasks, but they are increasingly being applied towards lo-
calization/detection problems. A classification CNN can be
converted to a localization CNN by replacing the final clas-
sification layer with a regression layer for which the activa-
tions are real-valued predictions, and by using a regression
loss function. Alternatively, Sermanet et al. proposes an
integrated approach to object detection, recognition, and lo-
calization with a single CNN. [8].

At the high level, human activities can often be accu-
rately characterized in terms of body pose, motion, and in-
teraction with scene objects [7]. However, due to the chal-
lenging nature of this problem, most current activity recog-
nition models rely on holistic representations that extract
appearance and motion features from the video from which
the images are pulled. Recently, Toshev et al. [10] showed
that applying deep CNNs to pose estimation as a regres-
sion problem has the advantage of reasoning about pose in
a simple but holistic fashion. They formulated pose esti-
mation as a body joint regression problem, in which the
location of each joint is predicted using a 7-layer CNN in

which the input is the full image. This approach achieved
a state-of-the-art PCP score (0.61) and was much simpler
than previous methods based on explicitly designed feature
representations and graphical models.

3. Approach
3.1. Pose Estimation/Joint Localization

Model Architecture

Figure 4. Illustration of the regression CNN. We omit repeated
layer types.

We formulate the human pose estimation problem as a
regression problem that can be modelled by a generic con-
volutional neural network. The CNN takes as input a full
image (96×96 pixels) and outputs the pixel coordinates of
each body keypoint. We used Lasagne (a library to build
and train neural networks in Theano) to implement the re-
gression net.

To express a pose, we encode the locations of all
k body keypoints in a pose vector defined as y =(
(x(1), y(1)), . . . , (x(k), y(k))

)T
. A labelled image in the

training set is represented as x, y), where x is the image
data and y is the ground truth pose vector. The output of the
CNN is a real-valued vector of 28 numbers representing the
14 concatenated (x, y) coordinates of the pose.

We use the Mean Squared Error (MSE) to represent the
distance between our pose vector and the ground truth pose
vector:

MSE =
1

N

∑
(x,y)∈D

k∑
i=1

(yi − f(wi;x))
2 (1)

where N is the number of training examples, D is the train-
ing set, k is the number of body keypoints, and wi is the
weights learned for the i-th body keypoint.

Training Details

We use backpropagation to optimize for the weights w.
We perform mini-batch gradient descent with Nesterov mo-
mentum over the training set with a batch size of 128.
We vary the learning rate and momentum coefficient over
time. The learning rate is initialized to 0.03 and terminated
at 0.0001; momentum is initialized to 0.9 and terminated
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Figure 5. Classification CNN
architecture for activity clas-
sification. The final layer out-
puts the probabilities of each
of the 410 activity types.

Figure 6. Regression CNN
architecture for keypoint
location estimation. The
final layer outputs a 28-
dimensional vector represent-
ing the x and y coordinates of
each of the 14 keypoints.

at 0.999. This CNN was implemented with Theano and
Lasagne [6]. See Figure 6 for a detailed figure with our
regression architecture.

3.2. Activity Classification

Model Architecture

We formulate the activity classification problem as a
multi-class classification problem that can be modelled by a
convolutional neural network. The CNN takes as input a full
image (256 × 256 pixels) and outputs a vector of numbers
representing the probabilities of each of the activity labels
for either the 410 specific activities or the 20 activity cate-
gories, depending on the ground truth lables passed in and
the size of the final fully connected output layer.

This CNN is implemented using Caffe [3]. We use
weight initializations from a pre-trained Caffe reference
model based on AlexNet [5]. It consists of five convo-
lution layers and three fully-connected layers interspersed
with ReLU non-linearities, max-pooling, and normalization

layers, with the final layer implementing the softmax func-
tion (Figure 5). The first convolutional layer has a depth
of uses 11×11 filters with a stride of 4, the second con-
volutional layer uses 5×5 filters with a stride of 2, and the
remaining three convolutional layers all use 3×3 filters with
a stride of 1. Furthermore, the max-pooling layers uses 3×3
filters with a stride of 2.

Training Details

We train the CNN using 15,000 images from the MPII
dataset labeled with the activity type and validated against
3,000 images. We train for 5,000 iterations using a batch
size of 256. The base learning rate is 0.001, which we de-
crease step-wise by a factor of 0.1 every 1,000 iterations.
We use a momentum of 0.9.

4. Setup

4.1. Data

The dataset we use for pose estimation is the Leeds
Sports Pose Dataset (see Figure 7) and its extension. To-
gether, they contain 11,000 training images and 1,000 test
images. All test images are taken from the Leeds Sport Pose
Dataset. The dataset contains images gathered from Flickr
searches for “parkour,” “gymnastics,” and “athletics,” which
have been deemed difficult to annotate. The images have
been scaled such that the most prominent person is roughly
150 pixels in length. All images are annotated with 14 body
keypoints: right and left ankles, knees, hips, wrists, elbows,
shoulders, and neck and top of head. Each body keypoint is
an (x, y) pixel coordinate pair in the image space.

Figure 7. A sample of the Leeds Sports Pose dataset used for train-
ing the regression CNN.

The dataset we used for activity classification is the MPII
Human Pose Dataset 8. This dataset contains approximately
25,000 images with over 40,000 people. Each image is ex-
tracted from a YouTube video, and all images are about
1280 × 720 pixels in size. The dataset covers 410 specific
categories of human activity and 20 general categories. The
images are each labeled with one of 410 activity IDs and
one of 20 activity category labels. In addition, each body in
the image is annotated with the bounding boxes of the body
and head, the x-y coordinates of each keypoint joint, and an
indication of whether or not the joint is visible. We used
this dataset for training the activity classification
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Figure 8. A sample of the MPII Human Pose dataset used for
training the classification CNN. The individual images are labeled
with the a specific activity type (410 classes total), and the images
of each column are all part of the larger activity categories (20
classes).

4.2. Preprocessing

Both datasets contain images that have unequal widths
and heights, while our system requires square images of
fixed size. We resize all images to a fixed resolution:
the Leeds images to 96x96 pixels and the MPII images to
256x256 pixels. We also zero-center the data by subtracting
the mean pixel value over the training set from each pixel
over all three RGB channels. We do not normalize the data,
since image data already has the same dimension size across
all three dimensions: (0, 255). We augment the datasets
by taking random crops and performing random horizontal
flips of the training images. After data augmentation, the
Leeds dataset consists of about 16,500 training and 1,000
validation images, and the MPII dataset consists of 180,000
training and 30,000 validation images.

4.3. Evaluation Metrics

For pose estimation, we evaluate using two different met-
rics, in order to compare our results with published results.
The first metric is Percentage of Correct Parts (PCP) [2].
This metric measures the detection rate of limbs. A limb
is considered correctly detected if the distance between the
two predicted joint locations and the true limb locations is at
most half the limb length. However, PCP penalizes shorter
limbs, such as lower arms, which are harder to detect.

The second metric is Percentage of Detected Joints
(PDJ) [10]. This metric considers a joint correctly detected
if the distance between the predicted and ground truth joint
locations is within a certain fraction (which we define and
vary) of the torso diameter. We define torso diameter as be-

Figure 9. Training and validation loss for pose estimation plotted
over 3000 epochs

Figure 10. PCP training and validation accuracies for different
body parts

ing the distance between left shoulder and right hip. Using
the PDJ metric means that all joint accuracies are evaluated
using the same error threshold.

5. Results
5.1. Pose Estimation

After training for 3,000 epochs with the Mean Squared
Error loss function, we ended up with 0.0577 training MSE
and 0.104725 validation MSE (see Figure 9). Training
loss decreases exponentially over all 3,000 epochs, but val-
idation loss quickly bottoms out. This suggests that we
are learning the training dataset well, but generalization
plateaus. To address this, we could do more data augmen-
tation in order to increase our dataset size, and/or construct
a deeper CNN with more parameters.

We calculate the PCP on the Leeds Sports Pose Dataset
for the head, torso, arms and legs (see Figure 10). We com-
pare results for the most challenging limbs–upper and lower
arms and legs–as well as the average across all challenging
limbs, to five state-of-the-art approaches, as seen in Figure
11.

We also calculate the PDJ on the Leeds Sports Pose
Dataset across the head, torso, arms, and legs, as seen in
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Figure 11. Percentage of Correct Parts (PCP) at 0.5 on Leeds
Sports Pose Dataset for our model as well five state-of-the-art
methods. These methods are from [1], [9], [4], [11], and [7], re-
spectively.

Figure 12. PDJ training and validation accuracies for different
body parts on threshold 0.5

12. Using the PDJ metric allows us to vary the threshold
for the distance between ground truth joints and predicted
joints.

Qualitative analysis. To get a better idea of the holistic
performance of our algorithm, we visualize a sample of pre-
dicted poses on the test set, as seen in Figure 15. We can see
that our algorithm is able to generate the correct pose for a
variety of conditions: rotation (row 3, column 1 and row 4,
column 1), figures that are turned sideways (row 2, column
1), foreshortening (the arms of row 5, column 3), occluded
limbs (row 1, column 2 and row 2, column 5), and different
lighting conditions (row 3, column 2 and row 2, column 4).
Even when the prediction is not precise, our model usually
gets the overall shape of the pose correct. Common errors
include a failure to extend the arms and legs to their full
lengths and confusing a person’s orientation (i.e., whether
or not they are facing the camera).

5.2. Activity Classification

We test our classification CNN on a validation set of
approximately 3,000 distinct images (augmented to give
30,000 images). Classification of this validation set of into
the 410 activity categories achieves a maximum accuracy of
31.89%. Classification by the 20 general activity categories
achieves an accuracy of 80.51%.

The validation loss decreases quickly initially and ap-
peares to plateau around 0.8 after 1,000 iterations, while the
training loss continues to decrease until about the 2,000th
iteration (Figure 16). Similarly, the classification accuracy

Figure 13. Training PDJ results presented over a range of normal-
ized distances between predictions and ground truth labels. We
plot over the range [0, 0.5] of the torso diameter. Results are ac-
cumulated into four categories: head (head and neck keypoints),
torso (neck, shoulders, hips), arms (wrist, elbow, shoulders), and
legs (ankles, knees, hips).

Figure 14. Validation PDJ results presented over a range of nor-
malized distances between predictions and ground truth labels. We
plot over the range [0, 0.5] of the torso diameter. Results are ac-
cumulated into four categories: head (head and neck keypoints),
torso (neck, shoulders, hips), arms (wrist, elbow, shoulders), and
legs (ankles, knees, hips).

(using the 20 general action categories) increases steeply
and plateaued around 1,500 iterations, while the training
accuracy continues to increase until about the 2,000th it-
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Figure 15. Visualized predicted human pose trees on images from the Leeds Sports Pose Dataset. Each pose is represented as a stick figure
where the colored lines connect predicted body keypoints. Different limbs are colored differently in the same image; each limb is colored
the same across multiple images.

eration, as shown in Figure 17).

The relatively large gap between the training loss and
validation loss may suggest that the model is over-fitting the
training data or the loss function optimization is converging
to a local minimum. We can address these issues by further
fine-tuning the hyperparameters of our model (learning rate,
step size, regularization strength, momentum), reducing the
complexity of the model, and increasing the training set size
through data augmentation.

Figure 18 shows the confusion matrix of the activity cat-
egory classification results. Note that more distinctive and
active activities, such as dancing, sports, music playing, and
winter activities, have high classification accuracies, while
broader categories, such as inactivity and volunteer activi-
ties, have lower classification accuracies.

Figure 16. Activity classification training and validation loss on
the 20 general action categories.
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Figure 17. Activity classification training and validation accuracy
on the 20 general action categories.

Figure 18. Confusion matrix, normalized by row, for activity clas-
sification on the 20 general action categories

6. Conclusion
Convolutional neural networks are a favorite architecture

for computer vision tasks, due to their simplicity and intu-
itive nature, and their reduced number of parameters when
compared to fully-connected models. They have been ap-
plied, with great success, to image classification tasks. It is
only recently that computer vision researchers have begun
applying CNNs to regression tasks. CNNs have the advan-
tage of being a holistic model that takes the entire image as
an input signal for each body keypoint, in contrast to local
detectors, whose reasoning is constrained to a single part
and can only model a small subset of interactions between

body parts.
We showed that human pose estimation can be cast a re-

gression problem and modelled with a generic CNN. Our
application of CNNs to the problem of human pose estima-
tion achieves competitive results on a challenging academic
dataset with a simple model. We hypothesize that we would
be able to achieve even better results with more compute
power and space (the depth of our regression CNN was lim-
ited by the RAM of the GPU it was trained on).

6.1. Future Work

To decrease the gap between training and validation
performance further fine-tune the hyperparameters of our
model. Things to consider include adjusting the base learn-
ing rate and learning rate policy, tyring different types of
mementum updates, and tuning the regularization strength.
Furthermore, model ensembles can be used to increase per-
formance.

We would also like to experiment with a combination
of joint estimation and activity classification tasks to see if
knowing the locations of joints in an image improves the ac-
tivity classification performance of a CNN. We would first
run the input image through the joint estimation regression
model to obtain the human pose information, and use this as
a secondary input (in addition to the original input image)
into the classification model. This additional information
may help our model determine the activity being performed
in the image. However, it is possible that 2D pixel coor-
dinates will not provide sufficiently useful information re-
garding the true 3D pose and action type.
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