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Abstract

The growing popularity of social media has created a
new medium for advertisers to promote their products. To
reach the modern-day consumer, advertisers have turned to-
ward referral marketing with top social media influencers
acting as brand ambassadors. The current method of man-
ually finding these individuals does not scale well to the
growing demand of companies discovering the power of
social media. We propose using convolutional neural net-
works (CNNs) for this task, focusing on Instagram. Our
approach involves finetuning various pretrained models us-
ing new training sets of ImageNet and ImageNet + Insta-
gram, and a validation set obtained through crowdsourcing
labels for Instagram photos. Additionally, we experiment
with data augmentations and network parameters. Our end-
to-end system produces a list of top Instagram users judged
to be the best brand ambassadors for products, given a set
of predefined categories.

1. Problem Statement

At a high level this is an extension of the object classi-
fication problem: given a product category, can we identify
the images representing said category and can we use this
information to identify the most influential brand ambas-
sadors for said category?

2. Introduction

Social media has transformed many aspects of human
life in the past decade. In particular it has changed the way
consumers think about what they buy, and with that, how
advertisers promote products. The ubiquitous presence of
social networks in daily life has caused modern advertisers
to rely on social media influencers to promote their prod-
ucts [1]. In particular, Instagram has become a key plat-
form for this type of advertising. To capitalize on this new
channel of advertisement, companies such as Brandnew al-
low advertisers to conduct Instagram-specific campaigns by
discovering the top social influencers who will likely be top

brand ambassadors [5].
Presently, these ambassadors are discovered by humans;

this is a costly and time-consuming manual process. It will
not scale to the influx of companies when this emerging
form of marketing becomes prevalent. Rather, we propose a
CNN-based object classification system that automatically
generates the set of brand ambassadors per product cate-
gory given the Instagram image streams of the queries that
best represent a particular product category. We predefine
a set of 10 product categories (e.g. soccer ball, skateboard)
and identify the influential users that are likely to advertise
for a brand in a given category based on their post history.
Given one of those 10 categories, if a user is influential (de-
termined by our own metrics using Instagram user meta-
data) and has also posted a significant amount of photos in
that category, then the system’s output when querying for
that category will include this user as a potential brand am-
bassador. The output will then be sorted, again using our
own defined metric, by the likelihood of being an influen-
tial brand ambassador.

Given queries defining a product category, henceforth
#query, obtaining candidate images for that category in-
volves taking images from Instagram that have been tagged
with #query. For instance, a bicycle retail chain that wishes
to find influential bicycle enthusiasts to help advertise their
new product will be interested in the product category bi-
cycle and the queries #bicycle, #bike, #biking, etc. A quick
look at the resulting #query streams will show these tags are
very noisy; the majority of photos tagged with #query will
not actually contain the product defined by #query (further
detailed in the Data section below). Thus, the main chal-
lenge in building this system is to reliably classify whether
a particular image actually contains an object in some cate-
gory. That is, we are interested in precision and recall values
in addition object classification’s standard metric of accu-
racy.

Recent work demonstrates that CNNs are able to achieve
super-human accuracy levels on standard object classifica-
tion benchmarks such as ILSVRC [11], making them the
expected choice for our system. Our system makes use of
several CNN models, trained using the Caffe framework [8].
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We compare the performance of our own model (defined be-
low) to 3 pre-trained models (CaffeNet, GoogLeNet, Net-
work in Network; discussed below) trained on different
datasets (defined below) evaluated on human-labeled data.
The final system then uses the best model to identify the
top influencers for a given product. This system will only
output the top influencers for its predefined product cate-
gories. To make the system more extensible, we apply trans-
fer learning on top of the best previously-trained model.

3. Data

3.1. Product Categories

Our 10 initial product categories are: bicycle, broccoli,
Christmas stocking, harp, paintball marker, Persian cat,
sewing machine, skateboard, soccer ball, and tennis ball.
The figure below shows an example image for each of our
product categories.

Figure 1. 10 Initial Product Categories

3.2. Instagram Data

3.2.1 Instagram Stream #query Images

We use the Instagram API [3] to pull a variable number
of images for a given hashtag. The most significant differ-
ence between ImageNet and Instagram images is that In-
stagram images do not follow the same constraints as Ima-
geNet [10]. It is completely possible for an Instagram user
to upload an image whose contents does not have any of the
#query terms that were used to find said image. Further-
more, it is completely possible for an Instagram image to
only contain products belonging to a different category al-
together. Since Instagram breaks the assumptions of the Im-
ageNet dataset, we henceforth refer to the unfiltered stream
of #query as noisy, and the human-labeled stream as vali-
dated. In the following figure we show an example of the
noisy data using the stream response of #bicycle.

Figure 2. Example #bicycle Images

From the sample images shown in Figure 2 it is clear that
the labels on Instagram do not necessarily correlate to what
is shown in the image. This noise makes a human annota-
tor’s job tedious to sort through, but is a perfect application
for ConvNets.

3.2.2 Instagram User & Metadata

In addition to Instagram photos, we also pull metadata
associated with each user that has produced a photo in our
set of pulled images. For a given user, this metadata is the
number of followers and an (optional) form of contact, i.e.
email. For each user’s image, we keep track of the num-
ber of likes, number of comments, and image creation date.
These user and image attributes are used in the evaluation
metric and beyond; they play no role in the classification
predictions of our system.

3.3. Datasets

Given the initial 10 product categories, we obtain labeled
training data for each category and define three training
datasets. To eliminate the impact of image size, we fol-
low the groundwork set by Wu et al. and choose to reshape
all images to size 256x256 [13] before cropping. The first
training dataset uses solely the ImageNet categories for par-
ticular objects, with roughly 1000 images per category. The
second training set is an augmentation of the first: in addi-
tion to the ImageNet images it uses noisy Instagram stream
responses for each category’s #query. There are roughly
1600-2300 noisy images per #query response.

We add a Noise category of roughly 5000 images gath-
ered from Instagram’s most popular and random hashtags,
i.e. #yolo, to represent the negative class, taking inspiration
from Bourdev et al. [6].

Finally, we use an ensemble of Fiverr [4] labelers to label
1600 images per product category. This labeled simulation
of Instagram image streams will be our test set.

3.4. Data Augmentations

For both data sets, we further apply three sets of data
augmentations to produce a total of 6 distinct training sets.
Caffe applies mirroring and cropping automatically, so we
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refer to these as the Standard set. The Standard set is the
first set of augmentations we apply. The second set of
augmentations concatenates the first set with the augmen-
tations used in the homeworks – random contrasts and ran-
dom tints. The third set concatenates the second set with
Instagram filters. We expect the Instagram filters to align
ImageNet training images with our test set of Instagram im-
ages, where filters are often used. Figure 3 shows an ex-
ample of our data augmentations for a sample image in the
”bicycle” class.

Figure 3. Bicycle Image and Its Augmentations

4. Background Literature Survey

In this section we discuss the papers most influential to
our final designs. Given the novelty of the Instagram dataset
and the recency of applying CNNs to computer vision prob-
lems, there is unfortunately no literature exactly related to
this project. However, this project generalizes to object
classification with CNNs, for which there is a great deal
of prior work. Primarily, we wish to focus on the works of
Szegedy et al. [9], Kandaswamy et al. [7], and Yosinski et
al [12].

In Szegedy et al.’s paper, the main conclusion is that ac-
curate models are inherently tied to deep architectures, with
their GoogLeNet model being 27 layers deep with pool-
ing included. Additionally, this work notes the effective-
ness of using small filters (1x1) in the deeper layers, as
well as using ReLU and pooling layers throughout the net-
work. Given GoogLeNet’s state-of-the-art results, we take
Szegedy et al.’s methodologies and apply them to a model
of our own creation (discussed below).

The next influential pieces of background literature are
the works of Kandaswamy et al. and Yosinski et al. These
papers illustrate how it is possible to reuse the knowledge of
a network trained on source problem S to improve the per-
formance of a target problem T. Their discussions on trans-
fer learning play an important role in how we finetune pre-
trained models to predict well on a new set of image cat-
egories. Specifically, Kandaswamy suggests that transfer-
learned models need to reduce the pre-training learning
rates by a particular order of magnitude, and increase the
fine-tuning learning rates by an order as well. Whereas

Kandaswamy uses 0.01x and 10x, respectively, we found
0.1x and 10x to be more effective in our task. Yosinski also
suggests an alternative solution, where the learning rates of
the pre-trained layers are ”frozen” and only the learning rate
of the last layer is tweaked. We discuss the results of these
two methods in the Results & Analysis section below.

5. Models
We experiment with 4 different CNN models to perform

11-class classification on our 10 object classes and noise
class.

5.1. Models Trained from Scratch

5.1.1 CNN1

The first model we try is a baseline CNN designed from
scratch, referred to as CNN1. Figure 4 shows CNN1’s re-
sults on the test set.

Figure 4. Architecture of CNN1

5.2. Pre-trained Models

From the results of the papers in the Background Lit-
erature Survey section, we expect transfer learning to be a
faster alternative to training our own model(s) without im-
pacting prediction accuracy. We experiment with 3 different
pre-trained models (discussed below) available in Caffe’s
Model Zoo [2]. We chose these particular models because
of their state-of-the-art results.

We modify each model slightly by changing the number
of units in the last softmax layer from 1000 (used in the
ILSVRC classification tasks) to 11, to account for our 11
classes. We initialize the weights of the other layers to the
weights of the pretrained models, and initialize the weights
of the last layer randomly. For each of the models below we
follow 2 training schemes. The first follows Yosinski et al.
by freezing all layers except the last (the one we changed); it
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then trains the network to learn the weights of the last layer
only. The second scheme, influenced by Kandaswamy et
al., freezes none of the layers. Rather, it reduces the global
learning rate by a factor of 100 and increases learning rate
of the last layer by a factor of 10. All changes are relative
to the original learning rates.

5.2.1 CaffeNet

The first pretrained model is the ”Reference CaffeNet”
from the Caffe Model Zoo [2]. This model is nearly identi-
cal to AlexNet, the ILSVRC2012 classification task winner
[cite alexnet]. With minor tweaks it achieves a top-1 accu-
racy of 57.4% on the ILSVRC2012 dataset.

5.2.2 GoogLeNet

The second pretrained model is the Caffe replica-
tion of Google’s GoogLeNet [citation], the winner of the
ILSVRC2014 classification task. GoogLeNet achieves a
top-1 accuracy of 68.7% on the ILSVRC2012 dataset. Be-
sides its high accuracy, another advantage of GoogLeNet
is the reduction in the number of parameters compared to
AlexNet despite its larger depth: 5 million parameters com-
pared to AlexNet’s 60 million [cite googlenet and alexnet
papers].

5.2.3 Network in Network

The last pretrained model we use is the Network in
Network (NIN) architecture [citation] trained on ImageNet
data. NIN achieves a top-1 accuracy of 59.36% on the
ILSVRC12 dataset; its advantage is an 8-fold reduction in
the number of parameters compared to AlexNet.

6. Evaluation Metrics
6.1. Object Classification Evaluation

We evaluate the correctness of our models using accu-
racy, precision, and recall. We use accuracy because it is
the standard metric of object classification; its value allows
us to compare the prediction ability of our model against
the works of others and to tune the hyperparameters of our
models. Its use, however, ends here. Given the nature of our
problem, we are primarily interested in predicting true posi-
tives. That is, given the #query defining a product category,
we wish to return only and all images with the product;
hence, the true positives. While accuracy scores increase
by correctly predicting images that do not show the prod-
uct (the negative class), this is not important to our system’s
final output.

Before we rationalize using precision and recall, let us
first define terminology using the product category bicycle:

• True Positive (TP) - The ensemble of annotators pre-
dicts bicycle and bicycle is one of the CNN’s top-k pre-
dictions.

• False Positive (FP) - The ensemble predicts bicycle is
not in the image and the CNN predicts bicycle.

• True Negative (TN) - The ensemble predicts bicycle is
not in the image and the CNN predicts the Noise class.

• False Negative (FN) - The ensemble predicts bicycle
and the CNN predicts the Noise class.

Precision, the measure of TP
TP+FP , represents how many

of our returned images are relevant to the product category.
A low precision value means that we are not filtering the
stream for the product category well, meaning that human
annotators must spend significant time filtering the CNN’s
predicted images. Thus, precision is proportional to how
well this idea scales.

Recall is the measure of TP
TP+FN and it represents how

many images of a product category that the CNN is actually
able to find. Initially, we expected low recall values to un-
dermine our project; if we are not able to find the images
representing a product category, then CNNs are not a good
replacement for human annotation. However, upon analyz-
ing the false negatives, we reassess low recall to be not as
detrimental as low precision. As shown in Figure 5, the
product is an insignificant part of false negative images.

Figure 5. Examples of False Negative Images

In terms of our problem statement, false negatives and
low recall are acceptable because we are interested in
whether a user will be a good ambassador, not if a user
happened to upload an image containing a bicycle. Hence,
we maximize precision while keeping accuracy and recall
above self-defined bounds.

6.2. Brand Ambassador Evaluation

The metric to evaluate the quality of candidate brand am-
bassadors is difficult to define without any feedback from
the advertisers. It also has no relation to the subject mate-
rial of this class so it will not be discussed in detail. The
current metric is:
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#Followers+100∗log(#Likes+1.4∗#Comments)
k

Note that it is inversely proportional to the index k of the
product in the CNN’s list of predictions. This is intentional
because the product should ideally be the focal point of the
image in order to represent the product category well.

Figure 6. A Harp at different values of k

In the figure above, Harp is the primary prediction of the
left-hand image while other categories (Piano, Cello, Stage,
etc.) have a higher k value than Harp in the right-hand im-
age. Inverse proportionality captures why the left-hand im-
age’s user is the more logical choice for brand ambassador.

7. Experiments & Results

There were 3 main questions we wanted to answer. First,
which CNN architecture gives the best results on Instagram
test data? Second, which set of data augmentations works
best? Third, which training data (ImageNet only, or In-
stagram + ImageNet) gives best results on Instagram test
data? To answer all of these questions we used a subset
of a human-labeled test set of 1700 Instagram images per
category.

Figure 11 shows the results for our own CNN model.
Figure 7 shows the accuracy, precision, and recall as a func-
tion of k for untrained CaffeNet, GoogLeNet, and NIN
models: for each of these 3, the test set accuracy, precision,
and recall are evaluated using the 1000 ILSVRC12 classes,
and the results are reported for the 8 classes out of our 10
that overlap with those 1000. Figure 8 shows results for all
3 models after transfer learning on only the last layer, and
freezing the rest. The learning rate used to train the last
layer was equal to the original learning rate used to train the
GoogleNet model. Figure 9 shows results for all 3 models
after transfer learning on all the layers, but with the global
learning rate reduced by 100x and the learning rate for the
last layer increased by 10x. Figure 10 shows the results of
varying the training data, for each of the 3 sets of data aug-
mentations (standard, standard + tint + contrast, standard +
tint + constart + Instagram filters), for both just ImageNet
training data and the combined ImageNet and noisy Insta-
gram training data.

Figure 7. Accuracy, precision, and recall in untuned models as a
function of k.

Figure 8. Accuracy, precision, and recall in finetuned models, with
only the last layer trained and the rest frozen.

Figure 9. Accuracy, precision, and recall in finetuned models, with
all the layers trained.

Figure 10. Accuracy, precision, and recall in finetuned models,
with all the layers trained, as a function of the training data.

Figure 11. Results for CNN1.

The following plot demonstrates the accuracy, precision,
and recall of our 10 product categoreies on one of our best
models, NIN, with top-1 accuracy and trained by freezing
all layers except the last. One reason we choose to demon-
strate this model is because of its high precision values. As
can be seen in some cases, i.e. harp and soccer ball, the
model has achieved precision of 1.0. While it is not perfect
in every case, we find it to be the best model overall.
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Figure 12. Results for our best model (NIN with all but the last
layer frozen) for each of the 10 categories.

8. Discussion
8.1. Error Analysis

Figure 13. Examples of False Positive Images

Figures 5 and 13 are prime examples of false negative
and false positive images respectively. The left hand image
of Figure 5 shows a common error of our system. When
the product either blends in with the background or is ob-
structed (this particular example illustrates both of these bad
situations), it is difficult for the model to find the product.
The right hand image of the same figure shows a different
weakness in our system; when a product is not the main
subject of an image, it will not appear as one of the top-k
choices. In this image, the skateboard is easily overshad-
owed by the guitar. While these issues are weaknesses of a
general object classification system, we see them as a bless-
ing in disguise. As discussed in the the Evaluation Metrics
section, these images are rather unexciting ways to show-
case the bicycle and skateboard products. Thus, it is accept-
able to leave the owners of these images out of our list of
brand ambassadors.

The left hand image of Figure 13 is an example of the
most harmful type of image to our system. In this image,
we wrongly predict a Harp to be in the image when a human
annotator is able to clearly spot that Harp does not exist
in said image. These images are the worst for our system
because they defeat the purpose of applying CNNs to our
problem statement; if human annotators are required to filter
the output of our CNNs, then CNNs face the same issues
of scale as current methods. The right hand image of this
figure is an interesting case. Our best model believes there
is a Persian cat in this image, while humans faced with the

same task believe there is not. Without being an expert in
felines, it is difficult to say whether the animal in this image
is truly a Persian cat, or simply a cat. This means there are
two possible issues. The first is that our CNN will predict
the closest label; if the cat category does not exist, the CNN
is more likely to predict Persian cat than Noise. The second
possibility is that there may be instances where our CNN
is more capable than human annotation; its classification
is correct whereas the annotators are incorrect. Regardless,
we feel this error is on the same level as false negative errors
and not as impactful as the first case of false positives.

8.2. Brand Ambassadors & Viability of This Ap-
proach

For brevity, Figure 14 only shows the top ambassadors
for 5 of our initial 10 product categories.

Figure 14. Candidate Brand Ambassadors

From the images, one is able to see that the product is
cast in a visually appealing manner. From the metadata as-
sociated with each image, one is also able to note that the
image owners are quite infuential. Another interesting note
about the top influencers is that an ample number are al-
ready associated with a storefront or indie-name brand. It
can be up to the big-name brands to decide whether to ally
with these users or to filter them from the list of influencers
completely. From these results, CNNs seem to be an ef-
fective method in scaling the growing trend of social media
marketing.
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