
ConvNets for Super-Wide Baseline Matching

Colin Wei, under mentorship of Amir Zamir
colinwei@stanford.edu

Abstract

In this project, I explore various convnet architectures
for two verification problems: face verification, and base-
line matching. Face verification is a problem for which con-
vnets have been applied extensively and have produced ex-
tremely good results; I attempt to take similar network ar-
chitectures and apply these results to the baseline matching
problem, training on a dataset of streetview images.

1. Introduction
Baseline matching is essentially matching correspond-

ing points in pictures of the same object taken at different
viewpoints. Super-wide baseline matching is performing
baseline matching for larger differences in angle between
viewpoints. Although humans can easily perform super-
wide-baseline matching, computers cannot do this very well
- popular techniques such as SIFT are not very accurate
as the differences in between viewpoints increases by too
much. This project takes a data-driven approach to baseline
matching, by attempting to train a convolutional neural net-
work on the image set. This is an approach that has not been
taken before, as there has not been enough data in the past
to allow such an approach.

I am working on this project with Amir Zamir and other
members of the CVGL lab; my role in the project is taking
care of the deep learning aspect while they will be in charge
of other aspects such as data collection, etc. Since applying
convnets has not been attempted for this problem before, I
split up the deep learning in two parts: the first was to make
sure that I can use convnets to replicate results from similar
problems such as face verification, and the second to begin
work on the baseline matching problem itself.

2. Problem Statement
For the main part of the project, the basic problem will

be to classify two input images as depicting the same ob-
ject or viewpoint, or different object. The dataset we plan
to train the neural network on will be taken from Google
StreetView images, and it will be comprised of many pic-
tures of buildings from different angles and different cam-

era closeness. The problem will be to see whether we can
map points from one image of the same building to a differ-
ent image taken from the same viewpoint. The hope is that
the convolutional neural network will be able to determine
whether such a mapping exists, and accurately describe the
mapping if there is one.

The problem I have worked on most for this project
is replicating face verification results. Face verification is
the problem of, given two images of people, determining
whether those images are of the same person or not. I ex-
perimented with different network architectures described
in various face verification papers.

3. Background/Related Work

While convnets have not been applied to baseline match-
ing before, there has been a lot of past work on face veri-
fication producing state-of-the-art results. One popular ap-
proach to the face verification problem is first training a net-
work on face recognition - classifying the identity of a per-
son over a fixed set of identities in the training set. These
networks are then used as facial feature extractors that are
fed into a verification network that determines whether the
faces are the same. In [6], Taigman et. al train a classifier to
identify faces from a dataset of 4.4 million faces and 4030
identities. They apply alignment by detecting key points in
the face - center of eyes, nose, and mouth - using which
the image is cropped and translated onto fixed locations for
each of the key points. They also apply 3D alignment to the
face in order to account for out-of-plane rotations. Align-
ment helps their results heavily - without it, their test accu-
racy on the benchmark LFW dataset drops to 87.9 percent.
Using the feature extractors gained from classification, they
train a Siamese network that achieves 97 percent accuracy
on the LFW dataset.

In [3], Sun, et. al propose a different architecture
that also achieves very good results on the LFW dataset.
Whereas most verification papers seem to use some sort of
variant of a Siamese network - taking two distinct networks,
extracting a feature vector for both images in the pair, and
then comparing the two feature vectors to classify, Sun, et.
al apply a different base architecture. To feed an image pair
into a convnet, they simply stack the two images on top of

1

each other, and then train directly off of that. They train
12 groups of 5 convnets which this method, which then
feeds into a RBM that aggregates the outputs of all these
convnets and performs prediction. Each of these groups of
convnets takes droppings of different regions of the face im-
ages. With their methods, they achieve around 92 percent
accuracy on the LFW dataset, using a much smaller training
set than the DeepFace team. Sun, et. al also use alignment,
though they only align around 3 points.

While the general architectures in the papers above
seemed the most transferrable to the baseline matching
problem, there were other architectures I considered. In
[1], Chopra et. al propose a Siamese network that trains
using a contrastive energy-based loss function, which min-
imized the energy of face pairs belonging to the same peo-
ple and maximized the energy of dissimilar face pairs. In
[4], Sun et. al take a similar grouped-convnet architecture,
but this time train their network through classification too
by classifying over 10000 identities. Using this method,
they achieve an accuracy of 97 percent on LFW, on a much
smaller dataset than the one used by [6].

One major difference between my attempts at face ver-
ification and the state of the art results listed in the papers
above is that in general, I used less complicated network
architectures (only training one stacked image convnet in-
stead of 60), and fed the unaligned face images directly into
my network. I did not attempt to align the faces before pass-
ing them into the convnet because alignment is a feature of
face verification only, as every face has several key regions.
However, when working with baseline matching, alignment
is not an option since the alignment between the two images
is exactly what we are trying to learn.

4. Technical Approach
4.1. Machines/Framework

I trained my networks on Amazon EC2 GPU’s using
the Torch7 framework. My code for training the networks
and loading data was based heavily off of the fbcunn Torch
package; I found Torch7 in general to be very fast.

4.2. Network Architecture

I experimented with two core architectures: a Siamese
architecture, and a stacked image architecture. For the
baseline matching problem, I plan to experiment between
several network architectures. One option, the option I plan
to explore first, is a Siamese architecture. Face verification
papers such as [1], [4], and [5] all use some variant of the
Siamese architecture. The Siamese network consists of two
identical convents, followed by a layer that connects the
output from the two different convnets and a loss function
layer. Two images will be passed into the Siamese network
as the input, each down one of the two identical convnets.

For the stacked image network, I used 5 convolutional
layers in the following layout, where the input is simply
two images stacked on top of each other along the RGB
depth channel:

input 128 by 6 by 128 by 128
conv5 128 by 40 by 128 by 128
reLu 128 by 40 by 128 by 128
pool 128 by 40 by 64 by 64
conv5 128 by 60 by 32 by 32
reLu 128 by 60 by 32 by 32
pool 128 by 60 by 16 by 16
conv3 128 by 100 by 16 by 16
reLu 128 by 100 by 16 by 16
pool 128 by 100 by 8 by 8
conv3 128 by 160 by 8 by 8
reLu 128 by 160 by 8 by 8
pool 128 by 160 by 4 by 4
conv3 128 by 200 by 4 by 4
reLu 128 by 200 by 4 by 4
pool 128 by 200 by 2 by 2
fc 128 by 2
binary softmax prediction

Each stacked image network I trained was some variant
of the above network, though I made small variations in
between networks such as adding dropout layers, changing
the input size to 6 by 64 by 64, etc. For the siamese net-
works, i used a similar architecture as one of the identical
towers on either side of the network without the last fully
connected layer, and combined the inputs from either tower
in a subtraction layer:

output left output right
output left - output right

fc 128 by 800 to 128 by 2
softmax and prediction

5. Experiments
5.1. Face Verification

5.1.1 Data

For my training dataset, I used the largest labeled faces
dataset I could find available - that was the Cross-Age
Celebrity Dataset, which contains 163446 images of 2000
different celebrities across different ages. The dataset con-
sists of close up shots of the faces of the celebrities, such as
The type of image found in the CACD dataset is extremely
similar to those in the LFW dataset, because they both con-
sist of photos of celebrities in the public. For the CACD
dataset, I created my training set by taking all images of
people who in CACD that were not in LFW. In total, this
resulted in around 120000 remaining images. I then con-

2

Figure 1. Typical images in the CACD dataset

structed training examples as follows: for each celebrity in
the dataset, I generated a permutation vector whose length
matched the number of that celebrity’s images. I then paired
consecutive images in the permutation vector and every
other image in the permutation vector together for a training
sample of same-id images, and for each same-id pair, I ran-
domly generated a different celebrity and chose an image
from that different celebrity in order for a negative training
example. This way, the training set would have the same
number of matches as incorrect matches in ID. This feature
is extremely important so that when the vector trains, it does
not get biased by the image set when predicting labels. For
my test/validation set, I used the LFW dataset, which con-
tains 13000 images of celebrities. I only used the subset of
images in the LFW test set, for validation, which has 1000
images. The images in both datasets were 250 by 250; be-
fore passing them into the network, I downsized them into
128 by 128 images so that the network could run faster.

5.1.2 Training

During training, my primary objective was to decrease the
loss function, as I noticed that this was very difficult to
do for the binary problem and thus a good indicator of
how well the network was learning. For face verification,
I trained two network types: a image stack network, and a
Siamese network, both on binary softmax classifiers. The
batch size that I used for training was 128. Because I found
that hyperparameter search was not very conclusive for bi-
nary softmax - it would take too long for different choices of
hyperparameters to register different results - I tuned my pa-
rameters by hand, decreasing the learning rate when I found
that the loss function was starting to plateau.

5.1.3 Results

Training the Siamese network did not work at all - I found
that even after training the network for around 50000 iter-
ations on a batch size of 128, there was no decrease in the
loss function whatsoever - it hovered around 0.69, the loss
obtained by random guessing. Even when I tried overfitting

the network to a dataset of size 128, it took several thousand
iterations on a batch size of 128 to show any improvement.

Training the image stack network worked significantly
better than the Siamese network. Training for the image
stack network went slowly too - on average, for a batch size
of 128, it took around 3000 iterations training a model from
scratch in order to notice any decrease in the loss of the net-
work. The chart above demonstrates the change in loss over

Figure 2. Loss of training set in blue, test set in red per epoch

the training set in blue, and the change in loss over the test
set in red over each epoch. From the above graphic, it is
clear that the convnet overfit very severely on the training
set. The cause for this problem could also be the cause for
why the Siamese network performed so badly from scratch:
the gradients produced by binary softmax are so small that
adding regularization terms in the first few epochs com-
pletely outshadow the direction of the gradient; perhaps the
lack of regularization in the first few stages of training is
why such severe overfitting occurred. This is because gra-
dients from binary softmax are on the order of 10000 times
smaller than the same gradients would be from classifying
a problem such as ImageNet, since there are roughly 10000
more classes in ImageNet and thus random guessing in Ima-
geNet would lead to a much stronger gradient signal. In the
end, my image stack classifier achieved a best validation
accuracy of 71 percent on the LFW dataset, which is signif-
icantly smaller than validation accuracies from state of the
art results. However, those results also used significantly
larger datasets or heavy alignment and data augmentation
in their models, which I did not implement.

5.2. Baseline Matching

5.2.1 Data

For the baseline matching problem, I used a dataset of
around 90000 images obtained from StreetView cameras.
These images are of buildings, and are classified by location
of the target point of the image. The goal on this dataset

3

is to learn which images have the same target points, and
which ones have different ones. For example, two same
location image pairs in this dataset would look like where

Figure 3. Example images

the center point of each image is approximately the target
of the image. For my training set, I used a subset of around
60000 of these images, and my test set consisted of the other
30000. For both training and testing, I considered only the
center 128 by 128 section of each image - since the camera
is trained on those center patches, those centers would have
the most similarity for same-target images and differences
for different-target images. After cropping these images, I
downsampled to 64 by 64 in order to speed up training on
the dataset. For baseline matching, I split up the dataset into
pairs the same way I split up the CACD dataset, generating
4 total pairs per image - 2 with same target location, and 2
with different target location.

5.2.2 Models

I tried out three different models on this dataset: the image
stack model, a Siamese network fine-tuned on a classifi-
cation network, and a Siamese network fine-tuned on a
regression network. Though the image stack model again
worked the best and the two Siamese networks did not learn
very well, I still believe the fine-tuned classification model
could be extremely effective. For my linear regression
model, I implemented the following layers on the bottom
of a Siamese network:

output left output right
output left - output right

linear regression

where output left and output right are both 5 dimensional
vectors, and I regressed them with a ground truth 5d vector.
For an image of target location t ∈ R3, and cameras at
location c1, c2 ∈ R3, with a angle of degree θ between the
vectors c1 − t and c2 − t, I let the 5-dimensional vector

f(c1, c2, t) =

(
c1 − c2,

|c1 − t|2
|c2 − t|2

, θ

)
∈ R5. I chose to

use this vector for regression because we have c1 − c2 =
(c1 − t) − (c2 − t), so the vector f(c1, c2, t) essentially

encompasses all the information about the transformation
between c1 − t and c2 − t. To generate the data to train
this model, I took all possible pairs of images that have the
same target location, and calculated the vector f(c1, c2, t)
for those images, as it does not make sense to calculate the
transformation between two images not of the same target
location. After training the model on regression until its
learning curve plateaued, I trained a Siamese network by
removing the last linear regression layer of the model and
training on a fully connected layer from 5 nodes to 2.

To train a classification based model on this dataset,
I again used knowledge about the target locations of the
models. There were approximately 11000 target locations
for around 60000 images in the training set; I simply trained
a classifier on these images for these target locations, the
same method used in a lot of papers about face verification
such as [6]. The network architecture looked like:

standard convnet 128 by 100 by 1 by 1 last layer
fully connected 128 by 100 to 128 by 11135

To train a Siamese network on top of this, I used the
architecture

classifier left without fc classifier right without fc
classifier left - classifier right

fully connected 128 by 100 to 128 by 2
softmax loss

5.2.3 Training

Although my Siamese networks made progress on the first
layer of training, they did not work very well at the binary
classification stage. However, they did learn extremely well
in the classification stage - with a loss function that has been
steadily decreasing:

Figure 4. Loss function per epoch

I decreased the learning rate at the 14th iteration, hence
the increase in the speed of convergence. While much of
the speed of this convnet’s learning is due to the fact that

4

the training set is very small relative to the capacity of the
net, it still stands this type of network trains significantly
faster than binary softmax networks do. However, the im-
provements this network made did not appear during fine-
tuning - the loss of the softmax was still stuck at 0.69, the
loss achieved by random guessing. I believe this may be
again due to overfitting - every time I started fine-tuning the
network, the loss would blow up initially to around 10. This
may be due to the fact that the network has already learned
some biases, causing it to classify very wrongly.

For the regression classifier, my model plateaued very
quickly to a loss not much lower than the original loss -
it seems much less potent a model than the classification
one. Furthermore, I believe that given a choice between a
linear-regression based model and a classification based one
to fine tune on, the classification based model would always
work better because it relates better to the current problem
of verification at hand.

Results from the image stack network obtained through
baseline matching were very similar to my results on the
same network from face verification. I also trained using the
exact same network architecture for both models; the only
difference was that the baseline matching network used in-
put sizes of 64 by 64 in row/height, while the face verifica-
tion network used input sizes of 128 by 128 in row/height.
I got validation accuracy per epoch of

Figure 5. Validation accuracy per epoch

Again, this model suffered from substantial overfitting,
as the two loss curves initially align and then branch
off sharply. Furthermore, accuracy on the validation set
plateaus really quickly because of overfitting. However, the
size of each epoch is 3000 instead of 10000 for the face
verification network - this means this network trained sig-
nificantly faster than the face verification network. I be-
lieve that this is due to more alignment in these inputs, as I
am cropping out a center square of 128 by 128 to train on.
Since target locations are given to be the same and are lo-

Figure 6. Loss per epoch

cated in the center, this cropping is very useful for helping
the model.

6. Conclusion

Since I am continuing work on this project through next
quarter, I feel that my current work has been a good step
in scaling everything up for training on larger datasets. The
first major conclusion I can draw from this for future work is
that binary softmax is not very robust, as training on larger
and larger datasets and models seems to increase the vari-
ance in the data really quickly and thus slow down the ef-
fectiveness of the model’s learning. Therefore, if I plan to
train from scratch using binary softmax, I should have some
method of adding robustness to my classifier - in [3], Sun
et. al did this by aligning the face images, grouping crops of
the images together, and training on those. Indeed, it does
seem that the image stacking classifier responds very well
to more alignment - It seems that training binary softmax on
un-augmented data can still give results, but not very robust
ones.

I believe that fine-tuning on classification is a very pow-
erful approach that can give good results; I plan to go back
through my implementation of fine-tuning on classification
across target location and figure out how to make it work.
Either there is a bug in my code, or Siamese networks are
very brittle - I don’t know which is the case, but I hope to
figure that out. Given how hard it is to train a binary soft-
max classifier versus how much quicker a classification net-
work learns, I believe that it will be very useful to be able to
fine tune a binary softmax classifier instead of training from
scratch.

7. Acknowledgements

Thanks to Amir for providing me with the data and giv-
ing me advice for the project!

5

8. References
[1]. Chopra, Sumit, Raia Hadsell, and Yann LeCun.

”Learning a similarity metric discriminatively, with
application to face verification.” Computer Vision and
Pattern Recognition, 2005. CVPR 2005. IEEE Com-
puter Society Conference on. Vol. 1. IEEE, 2005.

[2]. Krizhevsky, Alex. ”One weird trick for paralleliz-
ing convolutional neural networks.” arXiv preprint
arXiv:1404.5997 (2014).

[3]. Sun, Yi, Xiaogang Wang, and Xiaoou Tang. ”Hy-
brid deep learning for face verification.” Computer
Vision (ICCV), 2013 IEEE International Conference
on. IEEE, 2013.

[4]. Sun, Yi, Xiaogang Wang, and Xiaoou Tang. ”Deep
learning face representation from predicting 10,000
classes.” Computer Vision and Pattern Recognition
(CVPR), 2014 IEEE Conference on. IEEE, 2014.

[5]. Khalil-Hani, Mohamed, and Liew Shan Sung. ”A
convolutional neural network approach for face ver-
ification.” High Performance Computing and Sim-
ulation (HPCS), 2014 International Conference on.
IEEE, 2014.

[6]. Taigman, Yaniv, et al. ”Deepface: Closing the gap to
human-level performance in face verification.” Com-
puter Vision and Pattern Recognition (CVPR), 2014
IEEE Conference on. IEEE, 2014.

6

