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Abstract

The detection of a large, representative set of strong
gravitational lenses could greatly aid in our understand-
ing of cosmology. Unfortunately they are quite rare, and
the best techniques now revolve around squads of scien-
tists manually scanning through images. This is presently
borderline unsustainable and will be laughably inefficient
with the advent of the Large Synoptic Survey Telescope.
Here we examine the effectiveness of convolution neural
networks and transfer learning for automated detection al-
gorithms of strong gravitational lenses. We use images
from the SPACE WARPS project, a citizen science initia-
tive to examine tens of thousands of fields of galaxies for
the presence of strong gravitational lenses. We find that us-
ing a convolution neural network trained on Galaxy mor-
phologies as a feature extractor performs admirably but
markedly worse than the citizen-scientists. Scripts used in
the analysis of this paper are freely available at https:
//github.com/cpadavis/strongcnn. The images
are currently only available to those who contact the author,
but will be available to the public in the near future.

1. Introduction

A consequence of Einstein’s Theory of General Relativ-
ity is that mass bends the path of light. [4] Most of the time
the deflections are very small; the original ’gravitational
lens’ that tested the veracity of Einstein’s theory in the years
after the first world war was the sun, which deflected light
from stars behind it only a few seconds of arc. However,
when light passes through a particularly deep gravitational
potential (say, near the center of the dark matter halo of a
galaxy cluster), the deflections can be particularly large, re-
sulting in brilliant arcs and multiple images. These strong
deflections due to light passing through a deep gravitational
potential are termed strong gravitational lenses. The grav-
itational lensing signal can heuristically be thought of as a
trade off between a couple of factors: larger gradients in the
gravitational potential create larger distortions (and larger
gradients in the gravitational potential tend to reside near
to the center of the foreground galaxy or galaxy cluster),

while the more separated the foreground and background
objects are, the bigger the proportional distortion on the
background object by the foreground (conversely, the far-
ther away the background object is, the smaller it appears1).
[9]

The very existence of these potentials acts as a verifi-
cation of the Theory of General Relativity, but they can
also be used for much more. Strong gravitational lenses
are one of the few ways to directly probe the distribu-
tion of dark matter, a particle (or possibly family of par-
ticles) that does not emit electromagnetic radiation but does
have mass and hence interacts gravitationally with normal
baryonic matter. [15] This allows us to tally the mass of
the largest gravitationally-bound structures in the universe,
galaxy clusters, which can give us insight into the formation
history of these massive objects. [13] They can also find ex-
tremely distant objects. [6] In this way, strong gravitational
lenses can then tell us something about the expansion his-
tory of the universe, by setting limits on how massive the
most massive objects in the universe can be. The properties
of the bent light itself can also say much about that expan-
sion history. [14, 11, 5, 2, 7, 17] When an object is strongly-
lensed into multiple images, each image travels a different
span of space and time. When an object does not vary much
with time, these different path lengths have no practical im-
port. However, if the object varies appreciably quickly (say
it is a distant quasar, a supermassive black hole at the center
of a galaxy whose accretion disk emits high-energy radia-
tion at varying rates) then these different path lengths can
be used to pin down the rate of expansion of the universe.
Finally, strong gravitational lenses also have the potential to
rule out or validate alternatives to General Relativity. [18]

Unfortunately, for how useful strong gravitational lenses
are, they are also extremely rare. A next generation op-
tical survey like the Large Synoptic Survey Telescope or
the Euclid space telescope can expect to find only ten thou-
sand lenses in the whole sky, while it will find ten billion
galaxies. [16] Currently in astronomy there are only or-
der hundreds of strong gravitational lenses known, mostly

1Note that this is only true in the “low redshift” universe: when objects
are farther away than a cosmological redshift of z ≈ 2.5 or about 2.5 Gyr
after the birth of the Universe, they will actually grow in angular extent.

1

https://github.com/cpadavis/strongcnn
https://github.com/cpadavis/strongcnn


discovered by ’eyeball squads’ of graduate students. The
small number means that target criteria must be somewhat
broad in order to maintain a relatively high completeness.
Using reasonable target criteria to find strong lenses such
as looking only at massive galaxies still means that nearly
ten million objects will need to be inspected in the next
generation in order to find those ten thousand lenses. A
team of ten graduate students could expect to spend about
14 years looking at these objects. Computer algorithms
are not much better: most current machine learning algo-
rithms are woefully-underpowered for this task, and gen-
erally have poor completeness or poor purity – and often
poor both. Additionally, some algorithms are better at find-
ing some types of lenses than others; some perform well
on the brilliant arcs, but poorly on the multiply-imaged
objects, or vice versa. For example, [10] attempt to fit
arc-like features in images in order to find strong gravita-
tional lenses, but this means that multiply-imaged quasars
are completely ignored. [1] and [3] in contrast develop an
algorithm for finding gravitationally lensed quasars based
on catalog-level colors and magnitudes, precluding their al-
gorithm finding strong gravitational lens arcs. New algo-
rithms need to be developed to find more strong gravita-
tional lenses, and more strong lenses need to be found to
power these algorithms. These algorithms need to not only
identify potential lenses accurately, but be able to make
strong statements about their contamination rates, as spec-
troscopic follow-up can be an expensive endeavor. [12]
performed spectroscopic follow-up on 9768 galaxies, find-
ing 28 new strong gravitational lens systems, but taking 40
nights of telescope time on expensive telescopes.

SPACE WARPS (Marshall et. al, in prep.) is a citizen-
science initiative designed to overcome these two problems.
The program has users examine images from the Canada-
France-Hawaii Telescope Legacy Survey (CFHTLS) and
vote on where they see lenses. Users are also assessed
and trained with simulated lenses and known empty fields.
By having thousands of users analyze a survey for short
amounts of time each, it is hoped that a more complete
sample of lenses can be discovered, which can then be fed
into lens-finding algorithms to further improve their perfor-
mance.

2. Problem Statement
In this project we will use images collected by the

Canada-France-Hawaii Telescope Legacy Survey to ana-
lyze how Convolution Neural Networks can improve auto-
mated detection of strong lens systems. We will also assess
the performance of citizen-scientists by comparing our re-
sults to them. From other graduate work (but not course-
work), we have the locations and categories of around one
hundred and twenty known strong lenses, three thousand
large fields verified to contain no strong lenses, six thou-

sand simulated strong lenses, and several thousand classi-
fications by citizen-scientists of other potential strong lens
systems. These will form the core of our training and testing
datasets; our metric will be how well a CNN correctly iden-
tifies known and simulated lenses and non-lens systems.

We would like to examine the following questions:

• Do we have enough data to reasonably train and test a
CNN? Can we get around this by artificially inflating
the data, e.g. by adding rotated images?

• How do citizen-scientists do compared with this auto-
mated system?

• Can we use the results of citizen-scientists to train the
CNN?

• How well does using features extracted from a convo-
lution neural network trained on galaxy morphology
perform when determining the presence of strong grav-
itational lenses?

3. Technical Approach

From approximately 12000 fields of 440×440×3 fields,
we have constructed approximately 30000 cutouts sized
96 × 96 × 3. These cutouts are selected based on where
citizen-scientists clicked, on the theory that both ‘correct’
and ‘incorrect’ selections provide useful information about
the characteristics of gravitational lenses. In general, we
have access to two broad classes of images: ‘training’ and
‘test’ images. The ‘training’ images include fields that were
verified in advance to not contain any lenses as well as sim-
ulated lensed galaxies, quasars, and clusters. Many of the
simulated objects are over-exaggerated and extremely obvi-
ous, but we also have access to a second ‘refinement stage’
of the project, where much harder simulations were given to
users. The ‘test’ images are the fields that citizen-scientists
viewed, assessing whether a lens was in the field or not. In
these ’test’ images are 120 known strong gravitational lens
systems, which are also included in this set. (The project
confirms roughly half of these known lenses for reason-
able definitions of completeness and purity.) For all the im-
ages we also have an associated probability that the project
would evaluate that system as containing a lens.

It is clear that we do not have enough data. Luckily, we
also know that our lens objects must obey certain symme-
try properties, so it is quite easy to augment our data. For
example, we know that strong lens systems should be inde-
pendent of rotations as well as small amounts of stretching
and translation, so our data can be augmented by applying
those transformations to our images.

We train a classifier on this data using two different
methods. First, we code our own convolutional net in
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Figure 1. Typical sims. Insets indicate the location of the lens in the image. These insets are fed into our training system.

Figure 2. Typical Space Warps duds. Insets indicate regions where volunteers typically clicked. These insets are then fed into our training
system.

python using THEANO. Second, we apply transfer learn-
ing techniques to train on a convolutional net galaxy mor-
phology classifier, which has graciously been made avail-
able to us by Ryan Keisler and which achieved 7th place
in the 2014 Galaxy Zoo Kaggle competition. This classi-
fier runs 96× 96 images through 3 convolutional layers and
2 fully-connected layers and predicts a galaxy to have one
of 37 enumerated morphologies. (See Figure 4.) We train
classifiers on top of the first fully-connected layer, which
has 500 neurons.

3.1. The SPACE WARPS Catalog

SPACE WARPS is a web-based service that enables the
discovery of strong gravitational lenses in wide-field imag-
ing surveys by large numbers of people. Carefully produced
color composite images are displayed to volunteers via a
classification interface which records their estimates of the
positions of candidate lensed features. Simulated lenses,
and expert-classified non-lenses, are inserted into the image
stream at random intervals; this training set is used to give
the volunteers feedback on their performance, and to esti-
mate a dynamically-updated probability for any given im-
age to contain a lens. Low probability systems are retired
from the site periodically, concentrating the sample towards
a set of candidates; this “stage 1” set is then re-classified by
the volunteers in a second refinement stage. This “stage 2”
has a different set of training images, ones that are generally

considered ‘harder’. Most stage 1 simulated lenses are very
obvious2, while simulated lenses in stage 2 are often much
more subtle. 3 Figures 2 and 1 show example stage 2 fields
with cutouts inlaid. Notice that while the first three images
in Figure 1 are very clearly strong gravitational lenses 4,
the fourth is very difficult to find. Unfortunately, we would
very much like to find these, because there are many such
systems and they contain important information about the
mass structures at the centers of galaxies.5 Figure 2 high-
lights the difficulties of this task. Each ‘dud’ has features
that conceivably look like strong gravitational lensing, but
are in actuality some other confounding effect: color gradi-

2Very bright and blue quasars multiply-imaged around a small red
galaxy, very bright, separated, and full Einstein rings.

3Dim multiply-imaged quasars of varying magnitude, dim and incom-
plete Einstein rings located close to a galaxy.

4For the neophyte: the first is a broken blue arc around a central red
galaxy; the second is a blue arc around a central yellow galaxy; the third
is a multiply-imaged blue quasar (images appear above and below the cen-
tral galaxy), the fourth is a broken dim arc located behind a very bright
foreground galaxy.

5The trade off is this: the rate of alignment between foreground and
background objects decreases as one decreases the area around a fore-
ground object, but the strength of strong gravitational distortions – and
the signal we can pull out from identifying such systems – increases as one
gets closer to the center of the foreground object. A yet further complica-
tion to this is that background objects are naturally fainter than foreground
objects, and the foreground objects with the highest gravitational potential
(and hence the largest distortions of background images) tend to also be
the brightest objects. Both these complications render the task even more
difficult.
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ents from variations in the Point Spread Function between
the different color bands, dust surrounding a galaxy, galax-
ies that are actually in the same cluster, and chance align-
ments of background galaxies and foreground stars.

The fields users observe are 440 × 440 size images,
containing multiple potential locations for strong gravita-
tional lenses, although it is unlikely that a field contains
more than one strong gravitational lens. In order to gen-
erate 96 × 96 images of lenses and non-lenses, we use the
recorded estimates of the positions of candidate lensed fea-
ture. More specifically, we apply the DBSCAN clustering
algorithm, which agglomeratively grows clusters such that
that are within a minimum distance and contain a minimum
number of samples. DBSCAN is a convenient choice of
a clustering algorithm because it has a well-defined way of
rejecting outliers, which we generically interpret as genuine
“mis-clicks” on the part of users. We are very generous in
the definition of a cluster and only require two members
within 100 pixels of each other to form a cluster.

The fear of noisy clusters is this: the real task of our
techniques is to distinguish strong gravitational lens sys-
tems from other configurations of galaxies (for example,
random alignments of galaxies). Noisy clicks end up cre-
ating random cutouts of the field, slightly changing the task
of our classifier to distinguishing strong gravitational lens
systems from random cutouts from the field of a galaxy sur-
vey. Inclusion of noise however ended up not being an issue
for stage 2: non-lenses, where the correct action on the part
of the user is to leave no marker, have a median of 28 mark-
ers in stage 2, while simulated lenses (where the correct
answer is to click at a specific location) have a median of
180 markers. In stage 1, the simulated lenses have a median
of 80 markers, while the duds have a median of 3 markers
(and a mean of 9.6). It may be the case that noise is injected
in the stage 1 non-lens sample.

Overall, our base dataset has 24,177 images from stage
1, of which 5159 are of simulated lenses, and 1876 images
from stage 2, of which 151 are simulated lenses. We also
have 9030 classifications that stage 2 users made of images
in the CFHTLS survey where it is unknown whether they
contain a lens or not. From these classifications, a list of
approximately 40 candidate strong gravitational lensing ob-
jects have been found which will soon receive spectroscopic
follow-up to confirm whether they are strong gravitational
lensing systems or not.6 A future project with this work
would be to link the probabilities from the SPACE WARPS
system with the probabilities obtained by a detection algo-
rithm.

6Spectroscopy can yield precise redshifts of different objects in a field.
This way, if different parts of a strong gravitational lens arc are at the same
redshift, or if the multiply-imaged quasars are, then one can confirm that
we are really seeing such a system.
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Figure 3. Receiver Operating Curves extracted from the training
and validation sets used with our Convolutional Neural Network
after training for 35 epochs. These results should be compared
with the SPACE WARPS Stage 1 Receiver Operating Curve in Fig-
ure 5, which outperforms our network for false positive rates be-
low ∼ 0.3. However, above this point our Convolutional Net
achieves higher true positive rates than any of the other (machine
or human) methods herein considered.

4. Results

4.1. Convolution Neural Network

In order to retain our ability to experiment with non-
traditional training methods and architectures, we chose
to implement our Convolutional Neural Network (CNN)
from the ground up using THEANO. We settled on a five-
layer layer architecture consisting of two convolution/max
dropout layers, a fully connected layer, and a softmax layer.
Training was carried out using RMSprop with a decay rate
of 0.9, and the model was regularized using L2 normaliza-
tion with a regularization strength of 10−4 and dropout with
probability 0.5 at each layer . We chose our convolution lay-
ers to have stride 4 and depth 10 (with padding to maintain
the input image size), and the subsequent max pooling lay-
ers to have stride 2. Assigning our fully connected layer
50 neurons (and including the paramters in the subsequent
softmax layer) gave our model a total of 288,492 trainable
parameters.

Due to memory and time constraints, we have not yet
trained this CNN on all our of data. The results of train-
ing it on 8,000 randomly selected images from the SPACE
WARPS Stage 1 data set for 35 epochs is shown in Figure 3,
where we have plotted the Receiver Operating Curve ob-
tained from our model’s predictions on the training set and
a test set composed of another (non-overlapping) randomly
selected 8,000 images from the SPACE WARPS Stage 1 data
set. This result should be easily improved on by training on
more of our images, by adding data augmentation, and by
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Figure 4. Architecture of the convolution neural network trained
on the galaxy zoo morphologies. The feature vector we use comes
from the fully connected layer.

increasing the complexity of our CNN architecture. How-
ever, it already shows that training a CNN solely on the
SPACE WARPS data set is a viable option, given enough
CPU power and time.

4.2. Transfer Learning

Transfer Learning relies on the idea that convolution
neural networks that perform similar tasks pick up similar
features, as well as the observation that lower levels in neu-
ral networks tend to be quite generic in the features they
pick out. They provide an answer to the scenario when there
are too few data to effectively train a complex system like
deep convolution neural networks: start the training of your
new system from the results of training a similar system.
For the scope of this project, we chose to examine the ef-
fects of transfer learning from galaxy morphology to strong
gravitational lens identification. In both cases, an input im-
age of a galaxy is fed into the network, and some classifica-
tion is read out. Additionally, both networks need to differ-
entiate shapes in the central regions of the galaxy image (for
example to find bars in spiral galaxies) from outer regions
(spiral arms, arcs, multiply-lensed systems). The Galaxy
Zoo competition provides an ideal candidate for transfer
learning because of these facts, and also because the image
quality is comparable between the Sloan Digital Sky Sur-
vey (the telescope survey on which the Galaxy Zoo images
were based) and the CFHTLS survey. We have on hand a
convolution neural network trained to classify galaxy mor-
phology provided by Ryan Keisler 7. The architecture of
that network can be seen in Figure 4. We do the simplest
thing possible: we run the convolution neural network as a
feature extractor, and take images from the fully connected

7rkeisler@stanford.edu

layer. Thus we transform a 96 × 96 × 3 image into a 500
feature vector. We then train these feature vectors on var-
ious classifiers (Random Forest, Support Vector Machine,
Softmax) and evaluate results against a test set. We distin-
guish between stage 1 and stage 2 data because the simu-
lated lenses changed between the two sets. The code that
produces the feature vectors also augments the data by au-
tomatically producing feature vectors of flips and rotations
of the input images. This allows us to increase the size of
our input dataset nearly 20-fold.

We train these datasets on three classifiers: Random
Forests (which are an ensemble of decision trees trained on
the data), Softmax and linear Support Vector Machines. We
use stochastic gradient descent for the latter two classifiers.
We create a test dataset by randomly extracting 20 percent
of the dataset and setting it aside. We also ensure that any
data augmentation stays in the training or test sets. Our goal
with all the above systems is not to find the maximal accu-
racy, but to find some reasonable trade-off between the true
positive rate and the false positive rate: we want to find as
many lenses as we can, but we also know that confirmation
of these lenses by spectroscopic follow-up is an expensive
endeavor such that we want to minimize the number of non-
lenses that make it into our candidate list. Because of this,
any potential candidate list we would make from any of our
classifiers has a relatively hard threshold at a false positive
rate of 0.2.

The resultant Receiver Operating Curves can be ob-
served in Figure 5. In general we find that support vec-
tor machines perform the best as a classifier on the feature
vectors, but that the feature vectors perform more poorly
than the SPACE WARPS users. We must caveat though that
SPACE WARPS does not create a validation dataset against
which to test the performance of the system. Even if we
don’t perform quite as well as the citizen-scientists, we con-
sider this a promising baseline for future performance by
transfer learning: we have not even begun to consider po-
tential performance gains by retraining the convolution neu-
ral network on the SPACE WARPS data.

5. Discussion

We briefly attempt to answer the questions we posed at
the beginning of this study:

Do we have enough data to reasonably train and
test a CNN?

We do, and we have easy ways to augment the data
through rotations, flips, and (in the future) other transfor-
mations that leave the identification of a strong gravitational
lens invariant.

5
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Figure 5. Receiver Operating Curves the SPACE WARPS system and different linear classifiers trained on feature vectors extracted from a
convolution neural network originally used to determine galaxy morphologies. We find that of the linear classifiers on the feature vectors,
Softmax classifications perform best on the test dataset, however all the feature vectors perform worse than the users themselves. Note that
the x-axis stops at a false positive rate of 0.5, and the y-axis begins at a true positive rate of 0.5. Truly random guessing (which results in a
1:1 relationship between the true positive rate and the false positive rate) would not show up on this graph.

How do citizen-scientists do compared with this au-
tomated system?

Currently the citizen-scientists outperform our auto-
mated systems.

Can we use the results of citizen-scientists to train
the CNN?

In the sense that the citizen-scientists are used in creating
the cutouts for our system, we find their results quite use-
ful. We were unable to use them for much more than that,
however. Future work could involve calibrating our classi-
fications against the probabilities from the SPACE WARPS
citizen-scientist classification system.

How well does using features extracted from a con-
volution neural network trained on galaxy mor-
phology perform when determining the presence
of strong gravitational lenses?

We appear to do admirably well in that our receiver op-
erating curves obtain remarkably high true positive rates for
modestly low false positive rates. However, the extracted
features do worse than the citizen-scientists from SPACE
WARPS.

6. Conclusions

The need for new automated detection algorithms for
finding strong gravitational lenses will only become more
pressing in the next decade, as it becomes infeasible for sci-
entists to scan images by eye for such systems. Using the
SPACE WARPS dataset, we have examined how convolution

neural networks trained both on this particular dataset and
on other datasets can perform at the detection task.

While our Convolutional Neural Net trained on just the
SPACE WARPS dataset has not yet outperformed citizen-
scientists at sufficiently low false positive rates, there is am-
ple reason to believe marked improvements can be made
with more time and CPU power. In addition to training on
more images (and augmented images) for longer, we can
expect to gain a significant reduction in training time by tak-
ing advantage of THEANO’s GPU capabilities and by imple-
menting batch normalization. [8] It may also be beneficial
to explore larger and more expressive CNN architectures.

In our application of Transfer Learning, we find that fea-
tures extracted from a convolution neural network trained
on the classification of galaxy morphology (with a lin-
ear support vector classifier on top for converting the fea-
ture vector to a binary “lens” and “not-lens”) performs
admirably but markedly worse than the citizen-scientists
trained on the dataset. Further work examining improve-
ments by retraining the whole neural network could lead
to a generic classification machine that takes images from
any galaxy survey and states whether the image contains
a strong lens or not. Additionally there is much poten-
tial in both direct convolution neural networks and trans-
fer learning from other networks in linking the classifica-
tion outputs of the networks with the probability estimates
of the SPACE WARPS system, which also examined several
thousands more “unknown” systems and could lead to more
gravitational lenses being identified.
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