
Optimizing a Shallow Multi-Scale Network for Tiny-Imagenet Classification

Dash Bodington
Stanford University

450 Serra Mall, Stanford, CA 94305
dashb@stanford.edu

Abstract

This project explores the structural optimization of a
shallow multi-scale neural network. Its dual goal is to
acheive high classification accuracy on the Tiny Imagenet
dataset within certain network limitations, and to obtain in-
sight into the scale importance and properties of images.
The simple multi-scale convolutional neural network imple-
mented is able to acheive 19.1 % classification accuracy
on the provided validation set, used as a test dataset. This
value is found to be the limit for the network limitations im-
posed, but with slight modifications, similar networks can
reach up to 25 % accuracy. The learned classifier is ana-
lyzed in terms of its filters, and is also applied to some non-
classified fractal images, since fractal analysis is a multi-
scale process as well.

1. Introduction
This project began as an exploration of fractal-like prop-

erties in the Tiny-Imagenet dataset, but has evolved to be an
optimization of a specific multi-scale network for classifi-
cation purposes on the same dataset.

In the measurement of fractals, or the fractal properties
of images, a common analysis method is to calculate spe-
cific statistics on regions of an image which are different
sizes. One of these algorithms is the box counting algo-
rithm, a method which calculates a fractal dimension, or an
amount of self-similarity in an image. Before the begin-
ning of this project, the author was working on a regional
version of the box counting algorithm which is used in im-
age segmentation. Calculating statistics with different box
sizes, however, is a technique which is not limited to fractal
analysis. Similar calculations with more degrees of free-
dom, happen in multi-scale convolutional networks. Multi-
scale networks are convnets which contain parallel process-
ing channels containing convolutional kernels of different
sizes, thus processing an image at multiple scales.

Just as fractal properties give insight into the self-
similarity of an image, a multi-scale network may be able to

give insight into other structures of an image, and by opti-
mizing the structure of a small multi-scale network for clas-
sification, it may be possible to learn about specifically what
structures and scales are important for image classification
in the Tiny-Imagenet dataset.

The trained network will also be tested on a set of fractal
images which do not belong to any of the imagenet classes,
and analysis will be done to see if any interesting classi-
fications arise. For example, with the high level of self-
similarity shared by all of the fractal images, the most com-
monly predicted class for the classifier may be the most self-
similar class in Tiny-Imagenet.

Most high performance models for classification, includ-
ing most of those in the Tiny-Imagenet challenge, deal
with the optimization of training, rather than optimizing the
structures of networks. Data augmentation, such as adding
crops, rotations, and other permutations of images, as well
as filtering out bad training data covers the training data op-
timization, while tools like dropout and fine tuning are ex-
amples of training tricks often used. These tools, though
they help performance of trained models, do not contribute
to the understanding of images from the human point of
view. In general, deep networks work better from a classi-
fication point of view, but they quickly become too compli-
cated and confusing to teach us anything about the images
we are attempting to classify.

With a simple, shallow, network, this project hopes to
contribute to the understanding of images. By adjusting
model structure parameters on a hand-tunable scale, and
setting limitations on the size and training of a model, it
will hopefully be possible to discover what factors con-
tribute most strongly to the classification of an image in this
architecture. With information on the optimal multi-scale
network with constraints imposed, a number of larger net-
works based on this optimal mini-network will be tested for
performance.

By the conclusion of this project, we hope to know what
fractal-statistic-like calculations are optimal for image clas-
sification, what methods and structures are not optimal, and
how these optimal conditions may contribute to larger net-

1



works.

2. Background
Multi-scale methods are not new to convolutional neu-

ral networks and are the basis of similar fractal calculations
which are both used frequently when it comes to medical
imaging. Previous applications of fractal calculations and
shallow multi-scale convolutional neural networks fall fre-
quently into the medical field. Fractal textures and other
multi-scale method have helped distinguish growths in the
lungs [7], detect microcalcifications in a breast which warn
of breast cancer [2], and are involved in other analysis of
medical images where fractal structures tend to be common.
There are many fascinating uses of multi-scale analysis in
medical and other natural growth and structures imaging,
but because shallow multi-scale networks often do not per-
form well when it comes to large scale classification tasks,
the current rage in deep learning, they are generally not used
for such purposes.

This project is therefore taking an unusual approach to
the application of shallow networks to a problem (Tiny-
Imagenet) better suited for deep networks in the hope that
it’s learned parameters and properties, not it’s classification
accuracy, will be the interesting result.

3. Procedures
Because of the time, hardware, and iterative require-

ments of this project, several basic constraints had to be
imposed on the models and methods involved. Constrains
provide a framework for the modification, training, and test-
ing of various models. This allows for a reasonable rate of
progress, but also limits the performance of each model so
that optimality only holds under the constraints imposed,
and someone with more time, faster hardware, or different
networks may be able to create higher-performing models.

3.1. Dataset

The Tiny-Imagnet dataset consists of 100,000 images
uniformly divided in to 200 classes. The dataset also in-
cludes validation and training sets of 10,000 uniformly dis-
tributed images. For this project, the validation set is used
for testing, since its true labels are known, and testing fre-
quency is not limited by a test server.

3.2. Basic Multi-Scale Convnet Structure

The basic structure of the convnet in this project is the
following: There are four parallel scale channels. The scale
channels contain convolutional filters which are 9x9, 7x7,
5x5, and 3x3 in size. Each convolutional layer is followed
by a rectified linear unit and a pooling layer. In the sim-
plest model, the outputs of these four channels are concate-
nated and fed to two fully connected layers using a softmax

loss function to calculate probabilities for each of the 200
classes.

Figure 1. An illustration of the structure of the basic multi-scale
network [4].

3.3. Implementation and Hardware Details

All convolutional neural networks in this project are im-
plemented in Caffe [5], the Berkeley Vision and Learning
Centers deep learning framework. Caffe allows for sim-
ple implementation and modification of convolutional neu-
ral networks and supports fast training and testing by offer-
ing acceleration on CPUs and GPUs with fast linear algebra
libraries, and Nvidias CUDA and cuDNN.

Convnets implemented in Caffe were run on an Nvidia
GeForce GTX 780. The GTX 780 has 3072 MB of RAM,
a limiting factor when it comes to batch size, and generally
allows for the acceleration of training and testing by a factor
of 70 over identical CPU-only implementations.

3.4. Training Constraints

Though the GPU allows for a significant reduction in
training time, fully training many versions of a network to
determine optimal properties is very time consuming. For
this reason, a limit of 20,000 training iterations, with a batch
size of 32 images, was implemented. This limit allows for
relatively fast training of a model. Depending on model
size, this number of iterations takes approximately ten min-
utes, after which it is possible to see the convergence of the
validation accuracy of the model.

Because many of the network changes made are small,
learning rate does not need to be changed often. With sig-
nificant changes in the network, however, the learning rate
was tuned by hand to achieve a similar level of convergence
for each model tested. It is important to recognize that be-

2



cause of these training constraints, the results of this project
represent efficiency optimality, and though an amount of
convergence was achieved for every model presented, it is
possible that efficiency optima do not translate completely
to global optima.

Training method was constant for all training. Stochastic
gradient descent with momentum and learning rate decay
was used. AdaGrad and Nesterov’s Accelerated Gradient
proved to be too slow for the training speed desired.

3.5. Model Modifications

To find optimal parameters for the structure of this con-
vnet, many variables were changed in the structure of the
network flow, in the network size, and in the details of each
step in the network. The largest of the changes explored are
summarized below.

• Multi-scale depth: The total number of convolutional
layers split between the multi-scale channels was var-
ied to find the optimal number while maintaining a
small network size.

•ReLU type: The ReLU following each convolution was
swapped for a leaky ReLU, and the negative slope of
these ReLUs was modified.

•Pooling Size/Stride/Type: The pooling size, stride, and
type were changed. Maximum and average pooling
were tested.

•Power Layer: To examine the calculation of various
statistics of an image within the fully connected struc-
ture, a power layer was added after the pooling layer,
and the power was varied.

•Number of Fully-Connected Neurons: The number of
neurons in the first fully-connected layer was modified.

•Distribution of Fully-Connected Layers: With the total
number of convolutional layers fixed, the distribution
of these layers between the various scales was varied.

•Larger Changes: Several larger networks containing
the optimized multi-scale element were constructed,
trained, and tested, to examine the properties of this
element.

4. Results

The results of this project are comprised of several parts.
Primarily, there is the structure optimization of the multi-
scale network, which reveals the effects of changing param-
eters of the network, and works toward the optimal struc-
ture. Second, is a brief analysis of the learned weights of
the optimal network, though time constrants have limited
the depth of this section. Finally, a set of fractal images was
classified with the trained network, and presented.

4.1. Network Structure

• Multi-scale depth: Beginning from the basic network,
16, 8, 4, and 2 filters per multi-scale convolutional
channel were tested with varying numbers of training
iterations.

Validation Accuracy vs. Training Iterations
Filters per Scale 10k 20k 30k

16 0.119 0.137
8 0.131 0.147 0.153
4 0.137 0.139 0.149
2 0.129 0.136 0.136

Figure 2. Based on the results in this table, it was decided to move
forward with 8 convolutional filters per scale channel, 32 total, for
the highest accuracy at the affordable training duration of 20,000
iterations.

•ReLU type: Modifying the rectified linear unit to be a
leaky ReLU improved the network accuracy slightly,
however, negative slope values above 105 had a nega-
tive effect on accuracy.

•Pooling Size/Stride/Type: First, the pooling type was
changed to average, and the accuracy fell to 90

•Power Layer: Adding a power layer to the network be-
tween the concatenation layer and the fully connected
layers was a failure. The use of any power much larger
than 1 mandated that the learning rate be significantly
decreased, and made the network untrainable. Powers
below 1 were tested as well, but the shift required to
make all values in the concatenation layer greater than
zero made the network ineffective. The power layer
was not used moving forward.

•Number of Fully-Connected Neurons: The validation
accuracy of the model increased with the number
of elements in the first fully connected layer, but
plateaued after 100 elements, so the size was fixed to
contain 100 outputs.

•Distribution of Fully-Connected Layers: Surprisingly,
the distribution of the filters, totalling 32, did not
affect the network significantly

•Larger Changes: Several larger networks were con-
structed from the finalized shallow multi-scale net-
work, but none of them proved to be useful. The first
attempt was to connect two of these networks in se-
ries, so that the concatenation layer in the first net-
work fed into another multi-scale set of convolutional
layers. This network was more difficult to train, and
could not match the accuracy of the original network.
Another attempt to improve this network was to dou-
ble the length of the parallel multi scale channels, so
that before the concatenation layer, the data had been
fed through two sets of conv-relu-pools with the same

3



Filter Distribution and Accuracy
Filter Sizes

3x3e 5x5 7x7 9x9 Acc

16 8 4 2 0.191
2 4 8 16 .185
4 12 12 4 .183
1 1 1 29 .184
1 1 29 1 .184
1 29 1 1 .184

29 1 1 1 .192

Figure 3. Changing the distribution of the convolutional filters did
not significantly effect the validation accuracy. If anything, the
model favored small filters, but to maintain a strong multi-scale
structure without much sacrifice of accuracy, a uniform distribu-
tion of filters was chosen.

properties. This modification also did not improve per-
formance.
The most successful improvement to the network was
made by repacing the first fully connected layer with a
3x3 convolutional layer with 128 filters, and then pool-
ing 2x2 with stride 2 before the final fully connected
layer. This model acheived a validation accuracy of
0.248, significantly better than the 0.191 average of the
smaller network alone.

4.2. Trained Network

Because the network in this project is relatively small, it
is possible to visualize all of the filters and look for interest-
ing features.

Figure 4. The 9x9 features of this network. These large filters
present some clear features, best imagined as gradients accross the
kernels, and mostly taking the form of diagonal structures.

5. Conclusions and Extended Results
The objective of this project was to learn about the Tiny-

Imagenet dataset through trained analysis and extracted
multi-scale features. Though there is more work to be done,
the results so far have been interesting.

Figure 5. The 7x7 features of this network. These filters contain
recognizeable gradients and patterns as well, though it is not clear
exactly what they may detect.

Figure 6. The 5x5 features of this network. At this size it becomes
harder to distinguish patterns from what may be noise, but these
filters seem more symmetrical than the previous.

Figure 7. The 3x3 features of this network. These small filters
make it difficult to imagine image features.

For a multi-scale convolutional neural network of the
structure used in this project, 20 % accuracy seems to be a
hard limit on its capability, no matter the distribution of fil-
ters or values of various parameters. Most of the changeable
parameters for a network of this structure were explored,
and while it was possible to bring the network accuracy up
from an initial 12 % to 19.1 %, no amount of modification
or extended training was able to increase the accuracy sig-
nificantly further. In the latter stages of the project, some
simple data augmentation such as random crops, mirror-
ing and rotation, and image mean consideration were per-

4



formed. These tricks, however, did not yield measurable
improvements in the accuracy, and in some cases slowed
down training, hindering progress.

Observing the limits of this shallow netowork make it
clear why deeper networks with smaller filters are often pre-
ferred, but as Figure 7 illustrates, it is difficult to find pat-
terns and useful information in 3x3 filters. To be able to
learn from the filters, we must use larger sizes, which are
inherently more computationally intensive.

19.1 % accuracy is still a decent result to obtain from a
shallow network, training from scratch. Unllike fine-tuning
a large, deep network, the variation and exploration of shal-
low architectures helped develop an intuitive sense of the
options in convolutional neural network construction. The
greatest takeaway from this project is the intuition gained by
adjusting the network structure, which may be useful when
considering modifying larger convolutional neural networks
as well.

5.1. Extended Results

Because this project was based loosely on fractal-type
processing of images, a set of 100 fractal images which to
not belong to any class in Tiny-Imagenet were classified,
and some of the more interesting results are presented be-
low.

Of the 200 classes in Tiny-Imagenet, the fractal images
were distributed far from uniformly, as should be expected
because only some types of images can be generated as frac-
tals. The most popular class for the fractals was ”Spider
Web,” which had 15 images classified under it. In gen-
eral, these images contained thin lines and radial patterns
which made this classification logical. Next was ”Score-
board” with 8 images, and ”Centipede,” ”Brain Coral,” and
others, had 5 images. Many of the fractal images do ap-
pear somewhat similar to what they are classified as. ”Brain
Coral” is one of the best examples, which itself appears a
bit like a fractal.

A class which was not expected to show up in the pop-
ular results was ”Scoreboard.” A scoreboard, while it may
contain some rectangular geometric patterns which could
be part of fractals, is generally inconsistent with the fractals
assigned to it in Figure 9.

6. Future Work
Because of the short time frame of this project, there was

a great deal of area left unexpored. Likely the most interest-
ing analysis left undone would have been to visualilze how
images pass through the shallow multi-scale network. Be-
cause drawing conclusions directly from the filters is diffi-
cult, seeing how specific images change as they are filtered,
rectified, and pooled would have been fascinating. This in-
vestigation will still be done, but not within the timeframe
allowed for the project.

Figure 8. ”Brain Coral” fractals, resized to maximum dimension
32 without distortion [4].

This work in progress will continue, and will hopefully
lead to more interesting information on what is important in
images. With the exploration of a medical image database,
it is hoped to directly compare fractal analysis to similarly
structured, learned analysis, which likely offers improve-
ments over current techniques due to its flexibility.

References
[1] M. N. Ahmed and A. A. Farag. Two-stage neural network for

volume segmentation of medical images1. Pattern Recogni-
tion Letters, 18(1113):1143 – 1151, 1997.

[2] L. Bocchi, G. Coppini, J. Nori, and G. Valli. Detection of sin-
gle and clustered microcalcifications in mammograms using
fractals models and neural networks. Medical Engineering
Physics, 26(4):303 – 312, 2004.

[3] R. Candela, G. Mirelli, and R. Schifani. Pd recognition by
means of statistical and fractal parameters and a neural net-
work. Dielectrics and Electrical Insulation, IEEE Transac-
tions on, 7(1):87–94, Feb 2000.

[4] E. Foley. Empyreal light (www.elfractal.com), 2013.
[5] Y. Jia, E. Shelhamer, J. Donahue, S. Karayev, J. Long, R. Gir-

shick, S. Guadarrama, and T. Darrell. Caffe: Convolu-
tional architecture for fast feature embedding. arXiv preprint
arXiv:1408.5093, 2014.

[6] S. Kerdpiboon, W. L. Kerr, and S. Devahastin. Neural net-
work prediction of physical property changes of dried carrot
as a function of fractal dimension and moisture content. Food

5



Research International, 39(10):1110 – 1118, 2006. Physical
Properties {VI}.

[7] N. F. Vittitoe, J. A. Baker, and C. E. F. Jr. Fractal texture anal-
ysis in computer-aided diagnosis of solitary pulmonary nod-
ules. Academic Radiology, 4(2):96 – 101, 1997.

Figure 9. ”Scoreboard” fractals, resized to maximum dimension
32 without distortion [4]. Only two of the fractals contain the
rectangular geometries expected in a scoreboard.

6


