
Learning to Walk: A Tale of Jackrabbots Path-finding Adventures
CS231N Winter 2015 Project Milestone

John Doherty
Stanford University

Stanford, California 94305
doherty1@stanford.edu

Kathy Sun
Stanford University

Stanford, California 94305
kathysun@stanford.edu

Abstract

The Jackrabbot is an autonomous delivery robot de-
signed to share pedestrian walkways. In contrast to au-
tonomous vehicles, this proposes the challenge of interact-
ing safely with humans and bikers in a socially acceptable
fashion. The path of the Jackrabbot then becomes nontriv-
ial, as it cannot block pedestrian traffic or scare fellow trav-
elers. The goal of our project is to develop a path-planning
algorithm for the Jackrabbot that learns over time how to
navigate in the most natural way using both computer vi-
sion techniques and convolutional neural networks. This
project will combine aspects of CS231A and CS231N with
the Jackrabbot Research Project from Silvio Savarese’s lab.
The optical flow portion will be used for CS231A, and the
convolutional neural network portion will be used for the
CS231N course project.

1. Introduction

Path-finding and obstacle avoidance have been active ar-
eas of research since the development of autonomous vehi-
cles. The Jackrabbot, an autonomous delivery robot, faces
the additional challenge of interacting safely with humans
and bikers on pedestrian walkways in a socially acceptable
fashion. We want the Jackrabbot to learn path-finding be-
haviors by being driven by humans, given only what it ob-
serves from a single camera.

We ultimately hope to train the Jackrabbot to navigate
through a diverse set of pedestrian environments including
sidewalks and hallways. The goal of this project, however,
was to explore the feasibility of learning to navigate using
a single camera from training examples provided by a hu-
man driver. To achieve this, we decided to constrain the task
by focusing on hallway navigation. Specifically we wanted
the Jackrabbot to learn to go straight down hallways with-
out hitting stationary obstacles or pedestrians. Framing the
problem in this way gives us a clear objective and reduces

Figure 1: The Jackrabbot. Link to video: https://www.
youtube.com/watch?v=e0sNH9ZUKK0.

the number of possible situations we have to learn. Addi-
tionally, in the training examples we kept the robot at a con-
stant speed, so the task was simplified to learning the ori-
entation of the robot. The problem of predicting orientation
was again simplified by turning it into a classification prob-
lem in which the robot chooses between going left, right,
and straight at each timestep.

Our work is somewhat similar to that done on ALVINN,
an autonomous land vehicle in a neural network, developed
at Carnegie Mellon [1]. ALVINN attempted to solve sim-
ilar challenges but in a driving environment. We wish to
apply similar techniques to the Jackrabbot, operating in a
pedestrian environment.

We will reference material from CS231A [5, 6, 7, 8] and
CS231N [4].

2. Technical Approach

In this section we will describe the approach we used
to build a dataset and train convolutional neural networks
to learn Jackrabbot navigation from image inputs. As will
be described, there are a number of unique challenges that
arise when you try to build and use your own dataset to train
deep neural networks.

1

￼￼https://www.youtube.com/watch?v=e0sNH9ZUKK0
￼￼https://www.youtube.com/watch?v=e0sNH9ZUKK0


2.1. Dataset

For this project we recorded our own dataset by driv-
ing the Jackrabbot through the hallways of the Gates Com-
puter Science building. We simulated and encountered var-
ious scenarios while driving through Gates. We navigated
around students walking in the hallways as well as vari-
ous static obstacles including chairs, trashcans, and door
frames. We recorded 122 sequences, each consisting of im-
ages from the front two stereo cameras and joystick data.
Images were recorded at about 10 fps, and we ended up
with about 26,000 images from each camera. To build the
dataset, we associated each image with nearest joystick data
point in time. We then classify this joystick data point as ei-
ther left, right, or straight.

We ended up with a set of 26,000 images associated with
1 of 3 classes. But because of the nature of driving down a
hallway, our class distribution was heavily skewed as seen
in Table 1. We resolved this by eliminating some of our data
to make the distribution more uniform. This left us with
about 13,000 images. As we will discuss later, we experi-
mented with learning on both the uniform and non-uniform
class distributions.

For training and tuning our various networks, we used
85% of our data for the training set and 15% of our data for
the validation set. We saved four recorded sequences not in
either set for testing the accuracy.

2.2. Convolutional Neural Network

We encountered a number of unique issues trying to
learn navigation patterns for the Jackrabbot. First, since we
had to collect all of our own data, our dataset was rather
limited. While this does not seem like it would be an is-
sue for a three-class classification problem, it is challenging
because the amount of variability within each class. For ex-
ample, the driver may decide to turn left because the robot
was getting too close to a wall, or approaching a pedestrian
or obstacle. These all look very different in the images, but
all result in the same classification.

Additionally, single images are often ambiguous. You
cannot usually tell how fast a person is walking from a sin-
gle image. Thus, we had to incorporate some notion of time
in our model. This has been done in other works by using
optical flow images or replacing the channels of the input
with past frames in the sequence [7]. Examples of these two
inputs can be seen in Figure 2. We used optical flow images
as a baseline, but focused more on optimizing the latter for
this project. As we will discuss later, we experimented with
the number of channels in the input (i.e. changing the num-
ber of past frames the network examines when performing
a classification).

The network structures and other experiments are de-
tailed in the next section.

(a) Optical Flow + Greyscale
Image (b) Stacked Greyscale Images

Figure 2: Inputs that Capture Temporal Features

3. Experiment
3.1. Implementation

To collect data, we used a VirtualBox with Ubuntu to
connect to the JackRabbot. We saved data in ROS in bagfile
format. From the bagfile format, we exported the left and
right greyscale frames as well as the joystick data and saved
them as jpeg images and a text file of labels using a Python
script. The frame rate of the images (10 fps) is much slower
than that of the joystick data, so we sampled the joystick
point right before the image was captured.

After the data was exported as jpegs, preprocessing, ie
data augmentation, normalization, and feature extraction,
was done in Python. The optical flow was extracted from
the images along with a new label file using OpenCV [9] in
Python. We also doubled our data by mirroring the images
and flipping the labels, however this did not perform well,
so we used the original dataset.

The data was split into a training, validation and test set
and converted into lmdb format using C++. The mean of
the images in the training set was also saved in this step.

Different nets were created and ran on different prepro-
cessed lmdb formatted data using Caffe [3]. We used scripts
to sweep through the learning rate hyperparameter and plot
them.

All the visualizations and testing of our models were
done in Python.

All the code can be found in our git reposi-
tory at https://bitbucket.org/kathysun/
jackrabbot-navigation

3.2. Sanity Checks

In addition to visualizing our outputs, we implemented a
few visualizations for our inputs as sanity checks.

To get a feel for the direction input labels, we plotted the
distribution of the raw joystick data shown in Figure 3. As
you can see the data is evenly centered around zero with ap-
proximately the same number of left and right turns. How-
ever, the Jackrabbot is moving straight a significant amount
of time. Since there are also two peaks at -1 and 1 (the
edges of the joystick), but the rest of the data remains rela-
tively close to 0, it was difficult to determine where the bin

2

https://bitbucket.org/kathysun/jackrabbot-navigation
https://bitbucket.org/kathysun/jackrabbot-navigation


Figure 3: Plot of Raw Joystick Data to determine the dis-
tribution of joystick data and characterize the sensor data.
The top plot shows the histogram of raw joystick data which
ranges from [-1,1] with negative being in the right direction
and positive, the left. The bottom plot shows the joystick
values over time of all the data sequences.

edges should be when considering more than 3 bins, which
is why we decided on 3 bins separated by the sign.

Since most of the data collected is of the Jackrabbot go-
ing straight, over 70% of the joystick data is at 0. As a
baseline for our model, we’d like it to perform better than a
naive model that just went straight no matter what, meaning
it’d have to achieve an accuracy > 71%. We redistributed
our dataset by removing frames in the straight class to nor-
malize the class distribution to be uniform before training.
Table 1 shows the class distribution before and after redis-
tribution. Before normalizing the classes, the point at which
the loss would start at would vary wildly between training
sessions. After creating a uniform class distribution, the
loss started ≈ 1 and the accuracy started at ≈ 33%.

SanityCheckLossSoftmax = −ln(1/numclasses) =
−ln(1/3) = 1.0986

Left Straight Right
Before 15% 71% 14%
After 33.3% 33.6% 33.1%

Table 1: Class Distribution Before and After Normalization

To ensure our labels were properly lined up with our im-
ages, we plotted the average optical flow of the Jackrabbot’s
camera feed at each timestep against the labels we assigned
to it. The reasoning being that the average optical flow will
reflect the direction the Jackrabbot has turned, which should
be a reaction to the control mechanism, the joystick. As you

Figure 4: Plot of Labels vs. Average Optical Flow of Image
to determine if labels are lined up correctly with each image.

can see from Figure 4, the joystick control precedes the flow
as expected. To our surprise, however the latency is quite
noticeable, lasting over multiple frames, explaining why vi-
sualizing via a labeled video was not obvious.

4. Results
4.1. Before Normalization of Class Distribution

Since our learned task depends quite a bit on the move-
ment of obstacles in front of it as well as its own movement,
we knew we had to integrate some sort of temporal feature
into our inputs. We did this in two ways, using optical flow
and stacking our images into 3D images.

For comparison, we used a linear classifier on optical
flow images as an additional baseline to the always-go-
straight model (70% accuracy). This baseline had trouble
generalizing from the training set to the validation set, visi-
ble in Figure 6a, and performed well worse than the always-
go-straight model. When we put a single greyscale image
into a simple two-layer convnet, Figure 6b, the accuracy im-
proved but was still less than always going straight method.
Once we introduced the time dimension into the convnet by
stacking a sequence with the 5 frames preceding the label,
the accuracy of our model increased passed our always-go-
straight baseline to 80%. From Figure 6c, the validation
accuracy closely follows the training accuracy after a cou-
ple hundred iterations, suggesting that the capacity of our
model is not large enough and that we should add more data.
The learning rate also appears to be too high since the loss
levels off and stops decreasing. We also suspected that we
needed more data. In an attempt to double our dataset, we
augmented our dataset by mirroring the images and flipping
the labels, but this resulted in a decrease in accuracy, Fig-
ure 6d. As a result, we did not use the augmented data and
instead collected more data.

3



(a) Simple Net

(b) 2-Layer Net

(c) 3-Layer Net

Figure 5: Convolutional Neural Net Architectures

Input Data Depth Net Test Accuracy
Optical Flow + Greyscale 3 Linear Softmax Classifier 51.68%

Single Greyscale 1 Simple Net 70.96%
Stacked Greyscale 5 Simple Net 81.02%

Mirrored Stacked Greyscale 5 Simple Net 67.20%

Table 2: Results Before Normalization of Class Distribution

4.2. After Normalization of Class Distribution

In addition to collecting more data, we normalized the
class distributions to a uniform distribution to help the
Jackrabbot better learn the left and right classes. This
means our always-go-straight baseline now has 33% ac-
curacy. When we trained these on 3-layer convnets, the
models seemed to heavily overfit the data, Figure 8a, so we
added dropout for regularization. The results from the best
nets after normalizing the class probabilities are shown in
Table 3.

We used an inverse decay for the learning rate update

policy for all our nets.

4.3. Best Performance

The model that gave the best performance was the 2-
layer convnet with dropout, trained on a 5 consecutive
stacked greyscale images. This gave us an accuracy of
65.12%.

To qualitatively view the performance of our model, we
labeled videos of our test sequences with the predicted and
correct labels, Figure 9. Even though some images were
mislabeled, they still made sense and some were just off by

4



(a) Optical Flow + Greyscale - Linear Softmax Classifier

(b) Single Greyscale - Simple Net

(c) Stacked Greyscale - Simple Net

(d) Mirrored Stacked Greyscale - Simple Net

Figure 6: Results Before Normalization of Class Distribution

5



(a) Single Greyscale - 3-Layer Net

(b) Stacked Greyscale - 2-Layer Net

(c) Stacked Greyscale Every Other Frame - 2-Layer Net

(d) Stacked Greyscale Every Other Frame - 3-Layer Net

Figure 8: Results After Normalization of Class Distribution

6



Input Data Depth Net Test Accuracy
Single Greyscale 1 3-Layer Net 59.95%

Stacked Greyscale 5 2-Layer Net 65.12%
Stacked Greyscale Every Other Frame 5 2-Layer Net 62.47%
Stacked Greyscale Every Other Frame 5 3-Layer Net 54.14%

Table 3: Results after Normalizing Class Distribution

Figure 7: Learning Rate Inverse Decay

Figure 9: Labeled Input Stream. The green dot represents
a correct prediction and the yellow and red dots represent
the ground truth and the predicted label respectively in a
mislabeled instance. The position of the dots on the input
images represent the direction of the joystick data. A dot
on the left edge, center, and right edge signify a left turn,
straight, and right turn respectively. Link to video: https:
//www.youtube.com/watch?v=54lI4STjJQk.

a frame or two. This could still be acceptable behavior when
deployed to the Jackrabbot in real life.

To better understand when there is the discrepancy be-
tween the predicted and ground truth labels, we plotted the
value of the predicted and ground truth labels over time in
Figure 10. Predicted labels seem to be well correlated with

Figure 10: Plot of Predicted Labels vs. Ground Truth La-
bels Over Time.

Figure 11: Top View of the Predicted and Ground Truth
Labels.

the correct ground truth labels with some slightly offset-ted.
As you can see, the predicted labels jump around less than
the correct labels, indicating this may be desirable behavior
that would be low in accuracy.

We also wanted to visualize the physical distance be-
tween the predicted and correct trajectories Jackrabbot
would take, so we plotted the top view in Figure 11. These
trajectories are approximate since our labels are separated
into 3 classes. The Jackrabbot was moving at a constant ve-
locity of 0.5 m/s forward in our dataset and the maximum
angular velocity was set at 1.571 rad/s. Each label was taken
at 10 frames/s. From this, the average angle of rotation was
found from the average joystick positive and negative val-
ues, ±0.2, and used to plot the vector at each timestep.

(0.2 ∗ 1.571) ∗ 180/π = 18deg /s = 1.8 deg /frame

5. Conclusion
The results from the 2-Layer net with 5 consecutive

greyscale frames stacked as input achieved the highest ac-

7

https://www.youtube.com/watch?v=54lI4STjJQk
https://www.youtube.com/watch?v=54lI4STjJQk


curacy of 65.12%. This is 32% better than random guess-
ing. Despite having an accuracy of only 65.12%, from the
video stream, we think we are close to being able to deploy
and test on the Jackrabbot itself. Even though, we called
our human-controlled joystick data as ”ground truth”, there
are many paths Jackrabbot could take that would be nearly
identical to ”ground truth” and produce the desired behav-
ior. Futhermore, our human-controlled driving is not opti-
mal and varies from driver to driver, so our metric of match-
ing the ground truth labels exactly is indicative but not pre-
cise in measuring the optimal behavior.

Stacking the frames and normalizing the class distribu-
tions were the most effective, each improving our accuracy
by approximately 10%.

We learned that good visualizations are key to making
valuable and sensible adjustments to the network. Without
them, results can be very misleading and efforts to tweak to
hyperparameters fruitless. Quantitative measures, such as
accuracy, can also be misleading since skewed datasets to
a specific class will give high accuracy for models that do
nothing, such as the always-go-straight model. That is why
having baselines to reference and having qualitative mea-
sures to gauge whether the predictions make sense is really
important.

5.1. Future Work and Improvements

Our next steps include deploying this model onto
Jackrabbot and characterizing its performance in real time.
But before that, we would like to further improve our model
by means of more preprocessing of the label data and trying
Recurrent Neural Networks for videos.

Most the joystick data is close to zero (Figure 3) since
our turns are mostly small turns, which depending on the
driver or the sense of urgency, is controlled via small ad-
justments to the joystick or quick bursts to the edges of the
joystick axis. This variability in driver-to-driver data is also
apparent in the bottom plot where the second half of the
sequences have a smaller amplitude than the first half. We
also do not know the exact mapping of joystick control data
to the angular velocity of the Jackrabbot. For this reason,
we think it would be a good idea to smooth out the joystick
data either with a simple moving average or a Kalman fil-
ter or use accelerometer data as the labels. This way, the
labels would be easier to map and bin to several (> 3) di-
rection vectors. They also wouldn’t jump around so much
over time, and two very similar images won’t produce vastly
different labels, making it easier to learn.

In the future we would like to also experiment with recur-
rent neural networks. While we were able to improve per-
formance by including previous frames from the sequence,
we believe that it would also be useful to learn output se-
quences. For example, we should be able to learn that a turn
in one direction will be quickly followed by a turn in the

opposite direction. Recurrent neural networks have proven
useful for tasks such as activity recognition and may be use-
ful here [2].

As for extending this to more complex environments,
there is a lot of work that needs to be done. First of all,
we need to encode some sense of destination or goal. In our
experiments that was given to us because we were trying to
go straight and had only one way to get there. In any com-
plex environment, there will be a number of ways to avoid
obstacles and reach the destination. This and other chal-
lenges will need to be solved for a fully automated system,
but we believe this proof of concept is a good first step.

References
[1] Pomerleau, Dean A., ”ALVINN, an autonomous land vehi-

cle in a neural network”, Carnegie Mellon University, 1989.
http://repository.cmu.edu/cgi/viewcontent.cgi?article=2874&context=compsci.

[2] Donahue, Jeff and Hendricks, Lisa and Guadarrama,
Sergio and Rohrbach, Marcus and Venugopalan, Sub-
hashini and Saenko, Kate and Darrell, Trevor. Long-
term Recurrent Convolutional Networks for Visual Recog-
nition and Description. CoRR, vol. abs/1411.4389, 2014.
http://arxiv.org/abs/1411.4389.

[3] Jia, Yangqing and Shelhamer, Evan and Donahue, Jeff and
Karayev, Sergey and Long, Jonathan and Girshick, Ross
and Guadarrama, Sergio and Darrell, Trevor. Caffe: Con-
volutional Architecture for Fast Feature Embedding. arXiv
preprint arXiv:1408.5093, 2014.

[4] Li, Fei-Fei and Karpathy, Andrej. ”CS231n: Convolu-
tional Neural Networks for Visual Recognition”, 2015.
http://cs231n.github.io.

[5] D. A. Forsyth and J. Ponce. Computer Vision: A Modern Ap-
proach (2nd Edition). Prentice Hall, 2011.

[6] R. Hartley and A. Zisserman. Multiple View Geometry
in Computer Vision. Cambridge University Press, 2003.
http://searchworks.stanford.edu/view/5628700.

[7] R. Szeliski. Computer Vision: Algo-
rithms and Applications. Springer, 2011.
http://searchworks.stanford.edu/view/9115177.

[8] D. Hoiem and S. Savarese. ”Representations and Tech-
niques for 3D Object Recognition and Scene Interpre-
tation”, Synthesis lecture on Artificial Intelligence and
Machine Learning. Morgan Claypool Publishers, 2011.
http://searchworks.stanford.edu/view/9379642.

[9] Gary Bradski, Adrian Kaehler. Learning OpenCV, O’Reilly
Media, 2008. http://searchworks.stanford.edu/view/7734261.

8


