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Abstract

We present the results of several experiments using con-
volutional neural networks (CNNs) to predict image popu-
larity as measured by the number of views, ‘favorites’ and
comments generated by the image. Images were derived
from the Flickr 100M dataset. The CNN was obtained from
a previous study examining the classification of Flickr im-
ages by their ‘style.’ Several attempts to predict popularity
are presented, with mixed success. An analysis of why this
approach has failed thus far is put forth along with an out-
line of ongoing and future projects.

1. Introduction

Automated assessment of image popularity is an attrac-
tive prospect for obvious reasons, both for the potential in-
sights it would shed on human image perception as well
as providing the ability to automatically filter uninteresting
or otherwise unappealing content. Little is known about
what makes an image popular; in part because it is clear that
the predictors of popularity are not entirely encoded in the
features of the image—or video, song, tweet, or whatever
cultural item we consider. This is compounded by the phe-
nomenon of virality, which is in part characterized by a brief
but incredible increase in popularity of a cultural item. The
phenomenon is extraordinarily complex; and has been at-
tributed to mechanisms as diverse as spontaneous symmetry
breaking to the existence of information that exploits funda-
mental properties of the brain. The superpopularity of these
images is very unlikely to be due to the image alone—while
some images may be, by some metric, tens or hundreds of
thousands times more popular, this is not because the image
is tens or hundreds of thousands of times ‘better.’

Nonetheless it’s clear, at least trivially, that it cannot be
due entirely to exogenous features (i.e., features that are not
contingent on the image itself). As proof, we offer the fact
that the majority of imagespace is images of noise, yet very

few images of noise are widely popular. Furthermore, im-
ages that are objectively aesthetic or attractive—either due
to composition or content—are plainly more likely to be
popular.

Thus far predicting popularity has largely defied formal-
ization and automation (see Related Work). However the
recent development of sophisticated machine vision algo-
rithms which do not rely on hand-curated features—namely
CNNs—offer an opportunity for unprecedented predictive
power by more closely replicating the mechanism underly-
ing human visual cognition while also not relying on human
guesswork in the form of feature curation. Here, we lever-
age the power of CNNs to determine the degree of popu-
larity of variance that can be accounted for by image con-
tent alone—if any—and explore what the potential predic-
tors are.

2. Related Work

Predicting popularity has remained difficult despite ad-
vances in compute vision, potentially due to its percieved
intractability. Numerous research programs have skirted its
borders, but none (to the author’s awareness) have done so
as directly as the work presented in this paper. The bulk of
such work has focused on images aesthetics or quality, that
is, the percieved beauty of an image apart from its context.
Among these, most have used used human-devised features
[3, 5] and many focus on one specific aspect of image qual-
ity, such as camera distortion [11].

The field has not remained completely immune to the
deep learning revolution. Recent work has used CNNs to
assess image aesthetics, although still rely on human de-
vised features [10]. Others have applied CNNs directly to
the image themselves, but restricted themselves to curated
images sets where images are annotated in terms of low-
level features of the image that are believed to related to
overall image quality [4].

Some have succeeded in predicting abstract features of
an image (image ‘style’) over a largely unrestricted image
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domain by using a deepnet [8]. However, this work differs
in two important ways: it relies on post hoc human anno-
tation and treats the problem as one of classification rather
than explicit prediction of a continuous value.

An large body of work has been driven by the availabil-
ity of the Aesthetic Visual Analysis database [12], which
has been used to automate prediction of image aesthetics
[1] and memorability [6] and even the beauty of paintings
[9], as well as the interestingness [7] and aesthetics [2, 13]
of video data, most of which rely on human-crafted features
and ‘classical’ learning algorithms. Further, none of these
directly address popularity and all attempt to predict aggre-
gated ratings of individual humans.

3. Data

Our independent variables consisted of images drawn
from an online source, while our dependent measures of
popularity were drawn from social media quantities.

3.1. Images

Images were obtained from Flickr, a widly used social
photo-sharing website. Flickr made a large amount of data
recently available (the ‘Flickr 100M’ dataset), which con-
sists of metadata for some 90 million images and 10 million
videos, such as title, tags (user generated content-related
keywords) and photo acquisition data. To constrain the
space of images somewhat, images were only drawn from
those that included at least one of the top 100 tags, ordered
by their frequency of use.

Images were down or upsampled such that the smallest
dimension (horizontal or vertical) was 256 pixels, and then
center-cropped to 256-by-256 pixels. Before being trans-
formed into input for the deepnets, they underwent random
cropping to 227-by-227 pixels and randomly flipped hori-
zontally. In total, over 400,000 images were collected.

3.2. Popularity Metrics

Image popularity was assessed by three primary mea-
sures: the by-image number of views, the number of ‘fa-
vorites,’ and the number of comments. Views refer simply
to the number of times an image was accessed, at any time
and by anyone, since it was first uploaded. ‘Favorites’ quan-
tify the number of times a Flickr user elected to favorite an
image, thereby adding it to a collection of favorite images
that the user curates. Flickr users may engage in discus-
sion over an image, the amount of which is captured by the
‘comments’ quantity.

It is unclear which popularity metric best relates the pop-
ularity of an image. Views is the rawest measure; but is not
restricted to Flickr users, and hence is the most subject to
potentially-confounding viral phenomena through hotlink-
ing and external sharing, if virality is viewed as a combined

function of intrinsic popularity and the luck-of-the-draw, so
to speak. On average, images in our dataset were viewed
146 times, while the most popular image was viewed more
than 320,000 times (see Figure 1).

(a) (b)

Figure 1: Comparison of an average-popularity image with
200 views (a) and a super-popular image with over 320,000
views (b)

The other two measures come with orthogonal difficul-
ties. Favorites and comments are far sparser than views.
While the majority of images have some number of views,
only one in ten images has a favorite or a comment, which
makes them potentially more difficult targets for automated
learning due to their relative sparsity. In terms of robustness
to virality, comments appear to be—at least initially—the
most attractive: they are not open to non-users of Flickr,
and require the most work to create. However they are ac-
tually more frequent than favorites, which simply requires
the push of a button. The three measures of popularity are
summarized in Table 1. The covariance structure of the

Mean STD Max
Views 146.37 323.58 321,528

Favorites 0.32 2.21 1,533
Comments 0.50 5.51 1,175

Table 1: Summary of popularity metrics

metrics, while not directly related, is of sufficient interest
to bear mention. The number of favorites was predictive
of the number of comments and the number of views, but
views and comments were not highly predictive of each
other. Data are summarized in Table 2. This finding was

Views Favorites Comments
Views — 0.44 0.12

Favorites — — 0.44

Table 2: Covariance structure among popularity metrics

unexpected, as all measures were expected to vary in cor-
relation with each other—as we consider them all measures
of popularity. It is possible the capture both popularity and
the degree to which the image polarizes opinion, to varying
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degrees, with popularity generating views and ‘polarizabil-
ity’ driving comments, with favorites capturing aspects of
both. Although this explanation is purely speculative and
not entirely satisfying in the intuitive sense.

4. Methods
A number of experiments were carried out to determine

if deepnets could learn the features of images that predict
their popularity and, as a function of this, determine if this
information is encoded in images at all.

4.1. Predicting Popularity as Regression

The most straightforward way of accomplishing the pop-
ularity prediction task is as a problem of regression. The
goal of this is to predict, given an image, the value of some
measure of popularity. The number of views was selected,
as this metric was able to distinguish the largest number of
images (recall that the majority of images had zero com-
ments or favorites). As discussed, views was subject to
‘viral phenomena’ and accordingly exhibited a distribution
that was strongly governed by a power law (see Figure 2).

Figure 2: Histogram of image views depicting a clear Power
Law relationship (images with more than 2,000 views are
not shown)

This is to be expected, as the distribution of popularity of
any type of item or concept almost always follow a power
law distribution. Having a small number of training items
that have such enormous values for the quantity being pre-
dicted makes training extremely difficult; they act like land
mines in the training process, causing the loss to temporar-
ily explode and derailing gradient descent. To avoid this,
any image whose popularity metrics—views, favorites or
comments—was more than six standard deviations above
the mean was removed, resulting in some 500 images being
excluded from analysis.

Regression was performed by a pretrained deepnet de-
signed for image ‘style’ classification (also using Flickr im-

ages) [8], consisting of five convolutional layers followed
by three fully connected layers with 0.5 dropout. The net-
work is fully described by:

1. CONV 11x11, 4 stride - ReLU - Pool 3x3, 2 stride -
Norm

2. CONV 5x5, 2 pad - ReLU - Pool 3x3, 2 stride - Norm

3. CONV 3x3 - ReLU

4. CONV 3x3 - ReLU

5. CONV 3x3, 2 stride, ReLU, Pool 3x3, 2 stride

6. FC - ReLU

7. FC - ReLU

8. FC

9. Euclidean Loss Layer

The net was run for 20,000 iterations, a little over 4 times
over the dataset, with a base learning rate of 1 × 10−8. The
final fully connected layer had a learning rate multiplier of
20, all other layers had a multiplier of 1 (since it had been
pretrained).

4.2. Predicting Popularity as Classification

The purely regression-based approach was potentially
problematic for several reasons: it is heavily subject to ‘vi-
ral phenomena,’ it has a power-law distribution, and there
exists a distinction between the popularity due to the intrin-
sic properties of an image (i.e., the relative aesthetics) ver-
sus extrinsic properties (i.e., whether or not the image was
taken by a famous individual, or shared at the right time,
etc). Thus, predicting views is not only difficult but may
only measure a proxy of popularity, at least in terms of the
kind of features we’re trying to learn.

To address these issues, a second approach was taken
in which the image favorites were used. Favorites—as
mentioned—is restricted to users of Flickr, and requires
more ’work’ so to speak, which may reduce the system
noise. Images were considered of class 0 if they were never
favorited, and of class 1 if they had been favorited at least
once before. Favorites were substantially more selective
than views, of the 393,691 images analyzed, only 43,071
had been favorited at least once. The same neural net from
4.1 was used, although a softmax loss layer was used in lieu
of a euclidean loss layer.
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4.3. Predicting Popularity by Hybridizing Regres-
sion and Classification

The last experiment conducted attempted to fuse regres-
sion and classification. To eliminate the ‘power-law prob-
lem,’ data were divided into 10 bins where each bin con-
tained an equal number of images, where the 0th bin con-
tained images with the lowest number of views while the
9th bin contained images with the highest number of views.

Purely classifying images as belonging to one of these
bins is of course a perfectly valid task, although it discards
critical information. For instance, misclassifying a 2 as a 3
is far less grievous than misclassifying a 1 as an 8, though
a softmax layer will treat both mistakes with equal serious-
ness. Thus, while all images were labeled, the euclidean
loss layer was introduced once again, to differentially pe-
nalize ‘misclassification.’

5. Results

5.1. Experiment 1: Regression

The deepnet was run on the data for 6,000 iterations, cov-
ering the entire dataset roughly one and a half times. Loss
was very high, with a mean training error of 49,992 for the
final 1,000 iterations. Although, this is substantially better
than the expected error of approximately 87,000. The best
validation accuracy achieved was 50,090.

5.2. Experiment 2: Classification

The deepnet which classified the images as either having
been favorited at least once or never favorited ran for 86,000
iterations, although the primary gains in training accuracy
were achieved in the first third of training (see Figure 3).

Figure 3: Training loss from experiment 2. The values are
a moving average with a window of 400 iterations.

The origin of the oscillatory behavior is unclear, al-
though the oscillation period is approximately equivalent to
traversing the entire dataset.

With 10.9% of the dataset having the label 1 and the rest
being labeled 0, a neural net that simply guesses a label of
zero would achieve an accuracy of 89.1%, and that is what
was seen when the deepnet was tested against the validation
set, with a maximum accuracy of only 89.6% and a mean
accuracy during the last 5 testing episodes of 89.1%.

5.3. Experiment 3: Hybrid Approach

The deepnet for the final experiment was trained for
97,000 iterations (see Figure 4), with primary reductions
in training loss happening in the first third of the training
process once again.

Figure 4: Training loss from experiment 3. The values are
a moving average with a window of 600 iterations.

Oscillatory behavior was once again observed, albeit
with less regularity. Caffe calculates Euclidean Loss ac-
cording to:

1

2n

n∑
i=1

(xi − x̄i)
2

Given that there are 10 ‘labels’ which evenly partition the
data into equal-sized groups, the expected Euclidean loss
from guessing the mean ‘label’ is exactly 4.125. The
deepnet did significantly outperform chance, with a mean
validation-set accuracy of 4.01 and a minimum of 3.94.

6. Conclusions and Future Directions

We would be hard-pressed to claim that the deepnets
were successful in our endeavor to predict the popularity
of images. Here, we discuss several reasons for the failure
of the deepnets roughly arranged in increasing order of the
difficulty in overcoming them.

6.1. The deeepnets need more time or data

Training the deepenets longer would have necessarily
improved the training loss, however, in all three experi-
ments the validation accuracy was stable by the time train-
ing was halted, suggesting that the decrease in training loss
was due to overfitting rather than true learning.

Of course, more data is always better, although with
400,000 images our dataset is roughly twice the size of the
AVA dataset [12], which has been used successfully for re-
search programs that are similar to this one (see Related
Work), albeit with less abstract prediction goals. It is pos-
sible that our training data was simply too unconstrained,
and that the task could be accomplished by focusing on a
more specific domain of images (for instance, images of the
beach or the ocean).
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6.2. The deepnet’s design was not appropriate

It remains possible that the deepnet employed (see Sec-
tion 4.1) was not appropriate to this task, and a different ar-
chitecture would have greatly improved the accuracy. This
is of course always a possibility—one that any group work-
ing with deepnets can never be truly sure they have avoided.
Nonetheless, we remain confident that the deepnet was ap-
propriate.

As mentioned, the deepnet was adapted from a work
which attempted, and succeeded, at classifying images
based on their ‘style’ [8]. While classifying image style
is different, perhaps even orthogonal, to predicting image
popularity, the tasks are similar in that they rely on detect-
ing and learning abstract or very high-level features of an
image, or the confluence of low-level features on a global,
image-wide scale.

For this reason we do not believe our choice of deepnet
was inappropriate—and indeed we remain confident that it
was the most apt given the time constraints required we use
a pretrained model. In the future, when more time is avail-
able, we hope to architect a custom network and train it
from scratch.

6.3. Images do not encode predictors of popularity

The most concerning possibility is that images do not
encode the features that are predictive of their popularity—
i.e., it is not possible, even in principle, to predict how pop-
ular and image is without the context of the image. This
seems unlikely and is intuitively unsatisfying.

In the introduction, we made the argument that clearly
at least some of the popularity of an image is encoded in
the image itself, and offered as proof the fact that there are
no popular images that are of white noise. While this is
true, it is a distinct possibility that the intrinsic image fea-
tures predict popularity up to a certain point. For instance,
they might be able to inform one of an images potential to
become popular, but whether or not they actually become
popular is contingent on extrinsic features.

6.4. Future Directions

Despite the predictive failure of the deepnets in these ex-
periments, much remains that can be done to potentially
learn more. For instance, are other abstract features of an
image predictive of popularity? I.e., general aesthetics, or
emotional content, etc. Examining this covariance structure
would allow us to focus on more tractable features of an
image (i.e., aesthetics, which has been predicted with mod-
erate success) as intermediaries, since they are known to
predict popularity. Furthermore, this would permit use of
existing datasets (like AVA).

As mentioned previously, designing custom deepnets
(with increased depth to afford greater capacity for abstrac-

tion) could enable the detection of more subtle features rel-
evant to popularity.

Finally, identifying more stable measures of
popularity—perhaps on sites where content is gener-
ally shared among a known group (for instance, social
contacts on a website like Instagram) would alleviate the
difficulty presented by ‘viral phenomena’ (at least, partly).
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7. Appendix - Code
Limited code was written for this project; Caffe was

used, but run from the command line, and using a pretrained
network. All scripting done was non-standalone scripts
written for convenience purposes and hence are omitted
here.
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