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Abstract

Strange attractors are subsets of the phase space of a
dynamical system. When a strange attractor is present, the
state of the system will evolve towards positions within the
attractor. However, unlike simple attractors such as limit
cycles, the behavior of the system remains unpredictable
even after it has entered this pseudo-steady-state. Depic-
tions of these attracting sets have been found to have in-
trinsic aesthetic value. In fact, research has suggested that
human taste naturally converges to depictions of attrac-
tors with specific mathematical properties, even though it
is difficult to estimate these properties by simple inspection.
Convolutional Neural Networks (CNN’s) have shown them-
selves to be capable of almost human level visual classifica-
tion. Therefore, I explore their ability to learn to judge this
subtle property.

1. Introduction
Visualizations of fractal sets have consistently exerted

an aesthetic fascination. In contrast to other mathematical
visualizations, these have value beyond the ad hoc use of
mathematical researchers attempting to understand a tech-
nical problem. They constitute a unique category of images,
being neither photographs (landscapes, movie stills, x-rays,
telescope images, etc.) nor illustrations (diagrams, paint-
ings, animations, etc). Yet, many images from both of these
categories have measurable fractal characteristics, including
the most famous such property, scale-invariance.

The images used here are called ”strange attractors”.
Their generation and measurement closely follow [1]. The
images show a trajectory that is calculated by iterative ap-
plication of a quadratic equation, that is if xn = a, then
xn+1 = f(a), xn+2 = f(f(a)) and so on. There are three
basic behaviors that can be observed:

1. The state flies off into infinity

2. The state approaches a limiting orbit

3. Chaotic behavior develops

These three are distinguished in technical contexts by the
Lyapunov exponent, a measure of how quickly states with
similar starting positions will diverge. A very fast diver-
gence implies that information is being lost quickly because
the initial state quickly becomes very difficult to recover. It
is possible to measure this quantity empirically by keeping
track of nearby trajectories and their divergence. This is
one of the two quantities that are predictive of human pref-
erence, the other being the dimension.

The fractal dimension manifests the idea that fractal sets
have zero measure at some dimension, but infinite measure
at the dimension below. For example, a space filling curve
may have infinite length (dimension 1), but zero area (di-
mension 2). A common computational approach to mea-
suring dimension is the correlation dimension [3], which
measures the falloff of neighbor points at small scale. Intu-
itively, neighborhoods must shrink faster in higher dimen-
sional space.

Convolutional Neural Networks have recently gained
prominence as a state-of-the-art technique for image clas-
sification. Among image classification techniques, CNN’s
(as well as neural nets generally) are unique in learning a
hierarchical representation that starts from raw data, obviat-
ing the need to engineer features prior to applying the mod-
eling technique. This makes neural nets particularly suited
to image sets that are unusual in some way and thus possi-
bly resistant to summarization via traditional image features
developed to suit the needs of more typical image modeling
tasks. In this case the images are graphs of chaotic func-
tions, rich in graceful motifs, but rather disparate from ev-
eryday images.

2. Background
Convolutional Neural Networks have come to promi-

nence in recent years due to their success in many domains,
and particularly image classification. Convolutional net-
works learn a hierarchy of representations via back prop-
agation. More specifically, they attempt to learn sets of im-
age filters or kernels that are then used to process the im-
ages into sets of representations that are fed to multilayer
perceptrons [6]. A key breakthrough in classification came
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from the ImageNet project [5]. This architecture consists of
convolutional layers that are made nonlinear via the ReLu
activation function and subject to 2x2 max pooling. Inter-
estingly, the lower level representations learned by this net-
work are so good that they have been successfully trans-
ferred to other tasks (see the Flickr Finetuning Example in
[4]).

Transfer learning of CNNs or ’Finetuning’ is a technique
that brings the benefits of very large scale training to smaller
problems. The method works by retraining the last several
layers while keeping the initial layers constant or nearly so.
In effect, this is similar to building a multilayer perceptron
on the features learned from the larger dataset. The diffi-
culty of this approach lies in judging how many layers to
retrain, and at what rates. The most obvious determinant
of this is the amount of available data, but as with all non-
convex optimization tasks, it is not predictable ıa priori.

Clinton Sprott was an early proponent of using illustra-
tions of dynamical systems for artistic purposes [7]. Moti-
vated by the prospect of producing beautiful art in a com-
putational manner, he aimed to understand what motivated
human aesthetic preference [1]. According to his data, two
common metrics were indeed predictive of preference, frac-
tal dimension and Lyapunov exponent. The dimension is a
measure of how space-filling the curve is, and is not too
hard to estimate with a quick inspection. The Lyapunov
exponent is more subtle, and measures how chaotic a pro-
cess is, understood in the sense of quickly becoming unpre-
dictable. Sprott speculates that the range of Lyapunov expo-
nents that pleases humans corresponds to range that would
be observed naturally.

3. Approach
Generating attractor drawings is accomplished randomly

choosing a set of exponents for the quadratic dynamical sys-
tem.

xn+1 = ax2
n + bxnyn + cy2n + dxn + eyn + f (1)

After running the system for 300k iterations, a burn-in pe-
riod is discarded, and approximations of the correlation di-
mension and Lyapunov exponents are found computation-
ally. If the Lyapunov exponent is positive, an image is gen-
erated and its metrics are saved as metadata. For this task,
cython was used. On a i7 machine, an image could be gen-
erated every 5 seconds on average. The figures depict 9 ex-
amples of the images, arranged to represent the three binned
categories.

The CNN that was fine-tuned is known as ImageNet [5],
originally trained to recognize 1000 categories. The three
major variables investigated were the number of layers to
expose to retraining, the objective variable, and the num-
ber of bins for the objective. Initially, the experiment was

Figure 1. each row shows typical examples from the three different
Lyapunov bins, with the smaller (less chaotic) on top

Figure 2. each row shows three typical examples from the three
different dimension bins, with the smaller (closer to 1.0 which is a
line) on top

run with 20 bins, yielding accuracies around 20%, this was
later changed to 3 bins, which gave much better perfor-
mance. The training was done on EC2 instances through
a python script that programatically modified the caffe-
included Flickr fine-tuning example [4]. In a further evo-
lution of this project, this infrastructure would allow for
a queuing system for cross validation. In the future, this
would also be an important feature for integrating with any
automated hyper parameter optimizer, such as that in [?].

4. Experiment
The experiment was carried out using the Caffe library.

The generated dataset has 30,000 training images and 3,000
test images. Generally, tests were run for 100,000 iterations,
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Setting Test set accuracy Iterations
Lyapunov exponent (20 bins, single layer fine-tune) .0904 10,000
Correlation dimension (20 bins, single layer fine-tune) .2303 15,000
Lyapunov exponent (3 bins, single layer fine-tune) .8007 100,000
Lyapunov exponent (3 bins, 2 layers fine-tune) .8068 100,000
Lyapunov exponent (3 bins, 3 layers fine-tune) .796 100,000
Correlation dimension (3 bins, 2 layers fine-tune) .871 100,000

but were halted early when progress was evidently stalled.
It has been shown elsewhere that early curtailment is a vi-
able strategy [2]. On an amazon GPU EC2 instance, each
run took about 6 hours.

The results show that the dimension was much easier to
classify than the Lyapunov exponent, as expected. Its pos-
sible that the dimension can be guessed simply from the
number of illuminated pixels. However, on the 20 bins ver-
sion, the net still stalled at about 20%. The situation was
even worse for the Lyapunov model, which couldn’t even
break 10%. The range of values for dimension is 1.0 to 2.0,
and for Lyapunov it is 0.0 to 1.8. A 20 bin setting amounts
to very subtle differences, possibly comparable to margin
of error of the empirical measurement techniques. In the
future, perhaps some compromise can be found.

There was not an appreciable gain from allowing more
layers to be fine-tuned. In fact, further experiments showed
that allowing even more layers to learn caused results to de-
cay precipitously. Other experiments with increased learn-
ing rates had a similar effect. The overall impression was
the fine-tuning approach was able to produce decent results
quickly, but was easily pushed into areas of very poor per-
formance. It seems there may be a ceiling to this approach,
though its important to keep in mind that this signal was not
a terribly strong one and that the natural images that the net
was originally trained on differ very substantialy from those
used here.

5. Conclusion

The results of this investigation show promise, but are
not fully conclusive. The three bin setting seems too easy,
though in the Lyapunov case human performance may not
be a lot better. It was also the case the test performance
did not appreciably improve after the first 40,000 iterations,
indicating that mere overfitting was kicking in. To prevent
this, much more data should be generated.

This research is still in its early stages, though there is
clearly a signal being found. Going forward, I think the
most important thing is to understand how this dataset is
morphing the ImageNet weights. The natural way to do
this would be to explore embeddings of the activations of
the penultimate fully connected layer, with 4096 units, on
these images. Only time constraints and software frustra-
tions kept me from this.

A possible application of this model is for analyzing
chaotic time series. The theory of dynamical systems shows
that important invariants, such as dimension and Lyapunov
exponent are preserved by embeddings under weak condi-
tions. This means that a graph of such a time series could be
analyzed ’visually’ by a CNN to estimate a measurement. It
would be interesting to attempt a more direct deep learning
model of dynamical systems with an input layer that was
specifically shaped like the dynamical input (2 dimensional
in this case). A recurrent network might be a natural choice.

Another possible application would be to use a network
trained in this way to examine pictures of naturally occur-
ring fractal sets, such as clouds or plants. Could a CNN
trained on these generated images be better able to distin-
guish, for example, plant species with subtle differences in
growth pattern? Moreover, what gains, if any, could be ex-
pected by combining a generated set of images such as this
with a natural image dataset. Would the training results be
different? Would different filters be learned?
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