
Optimizing CPU Performance for Convolutional Neural Networks

Firas Abuzaid
Stanford University

fabuzaid@cs.stanford.edu

Abstract

We hypothesize and study various systems optimiza-
tions to speed up the performance of convolutional neu-
ral networks on CPUs. Currently, large-scale CNN experi-
ments require specialized hardware, such as NVidia GPUs,
and specialized APIs, such as NVidia’s CuDNN library, to
achieve adequate training performance. This provides a
significant barrier to research, as the availability of high-
performance GPUs is rather scarce. To address this prob-
lem, we examine the possibility of optimizing CNN perfor-
mance for CPUs by borrowing techniques that have pre-
viously been used for GPUs and studying the various per-
formance trade-offs therein. With these improvements, we
are able to train on CPUs up to 4X faster than state-of-the-
art systems, such as Caffe, while still maintaining statistical
correctness.

1. Introduction
Deep convolutional neural networks (CNNs) have

emerged as one of the most promising techniques to tackle
large-scale learning problems in computer vision. Within
these networks, a series of convolutional layers are typi-
cally used to extract translation invariant features from the
image, a very useful property. A limiting factor, however,
for using convolutional nets on large data sets was, un-
til recently, their computational expense. This changed in
2012, when Krizhevsky et al. demonstrated that training
large CNNs with millions of weights and massive data sets
was computationally tractable on GPUs [8], which subse-
quently sparked significant interest in various other CNN
frameworks and libraries that incorporated GPU support,
including Torch [4], Theano [1], cuda-convnet (Krizhevsky
(2014)) and Caffe [6]. Many of these frameworks are based
around the CUDA library, a set of APIs that are compatible
with NVidia GPUs [5].

Thus far, optimizing the convolution operation for CPU
performance has proven to be elusive, and the efficiency
of the convolutional layer is critical for training these net-
works, because the convolutional layer is often the bottle-

neck in these computations. This is despite the fact that,
in a typical CNN, the convolutional layers may only have a
small fraction (i.e. less than 5%) of the parameters. How-
ever, at runtime, the convolution operations are computa-
tionally expensive and take up about 67% of the time; other
estimates put this figure around 95% [7]. This makes typi-
cal CNNs about 3X slower than their fully connected equiv-
alents (assuming equal size) [2].

Many of the optimizations employed in CuDNN [3] can
also be applied to enhance the performance of CNNs on
CPUs, specifically for the convolutional layers. With these
improvements for convolution operations, we can train 4X
faster than state-of-the-art systems, such as Caffe. Currently
Caffe’s CPU code does not batch the convolutional com-
putation for multiple images; rather it computes the con-
volution for a single image via a single matrix multiplica-
tion. However, as is demonstrated in Chetlur et al. (2014)
and Garland et al. (2008) [3], [5], the convolution can
be calculated for each image separately by “lowering” the
N×C×H×W 4D input data tensor and the K×C×R×S
filter weight tensor into respective 2-dimensional represen-
tations, and then using a matrix multiplication operation
with a corresponding kernel matrix to compute the correct
result.

To demonstrate this lowering strategy, we created a new
framework called Caffe ConTroll (CcT), a controller or op-
timizer for Caffe. In CcT, we demonstrate that this lowering
strategy is also effective for CPU performance; furthermore,
we examine the ability to lower the 4D data and filter ten-
sors in various other ways, rather than the straightforward
lower technique used by Chetlur et al. (2014). These dif-
ferent lowering approaches actually a series of tradeoffs be-
tween memory bandwitdh and computational cost, which
vary across various dimensions of N,C,H,W,K,R, and
S. By employing these techniques and analyzing these
tradeoffs intelligently, we are able to train large-scale CNNs
on CPUs much more efficiently.

2. Lowerings
We introduce three different types of lowerings as shown

in Figure 1. Plan 1 refers to the classical plan used by

1

0

Plan 1 Plan 2 Plan 3

Lo
w

er

Ph
as

e # FLOPs

Out. Size K2M2I

0

KMNI

0

N2I

2K2M2IO

G
EM

M
Ph

as
e # FLOPs

Out. Size M2O

2K2MNIO

KNMO

2K2N2IO

K2N2O

0

Re
m

ap
Ph

as
e # FLOPs

Out. Size M2O

M2KO

M2O

M2K2O

M2O

Input Size: NxNxI Kernel Size: KxKxI # Kernels: O Output Size: MxMxO (M=N-K+1)

Figure 1. The cost model for each of the three lowering techniques.
The lowerings break down into three different phases: the lower-
ing phase, the GEMM phase, and the remap phase.

Chetlur et al. in the CuDNN library. Plan 2 uses a different
approach – we do no convolutional “windowing” prior to
executing the matrix multiplication. In contrast, Plan 1 ap-
plies the 2D convolution windowing algorithm to the input
data tensor. In Plan 2, the convolutional window is applied
after the GEMM output.

Plan 3 represents a compromise of sorts between Plan
1 and Plan 2. In Plan 3, we apply a 1D convolution win-
dow across the width dimension W to the input data ten-
sor before the matrix multiplication step. After the GEMM
output, we apply another 1D convolution along the height
dimension H . The cost models for each of these lowering
plans are summarized in Figure 1.

3. Experiments

In order to confirm our hypothesis – that our hardware
efficiency is superior to Caffes while still maintaining the
same statistical efficiency – we conducted two sets of ex-
periments. These two experiments are both necessary in or-
der to confirm that we have the same statistical efficiency as
Caffe independently from any experiment that demonstrates
better hardware efficiency.

To confirm statistical efficiency, we examined the num-
ber of iterations vs. the measured loss per iteration on a
variety of networks, such as LeNet on MNIST data set and
AlexNet on the ImageNet data set. Our experiment protocol
was as follows: we ran each of these networks both on Caffe
and on CcT and then measured the loss after each iteration.
We expected to see that, within a reasonable amount of er-
ror, the measured loss for each system converge at roughly
the same rate. Then, to examine hardware efficiency, we
examined the throughput, both on a per-layer basis and on a
per-iteration basis. Finally, we conducted these experiments
across multiple lowering strategies to show the tradeoffs be-
tween these different approaches.

Figure 2. The training loss and training accuracy of CcT on
AlexNet. This was run on 1% of the ImageNet dataset. As is
shown, the loss clearly converges after several thousand iterations,
and the training increases as a result.

Figure 4. An overall comparison of the execution for all convolu-
tional layers for a single iteration of AlexNet between CcT, Caffe-
CPU, and Caffe-GPU. CCT and Caffe-CPU ran on a single 8-core
Haswell @ 2.9GHz. Caffe-GPU ran on a single NVidia K520
without CuDNN API support. Caffe-Titan estimated from Caffe’s
public benchmark. Caffe-Titan + CuDNN estimated from Caffe’s
public benchmark.

4. Results

Our results show that, with these lowering techniques we
are able to comfortably beat Caffe’s CPU performance by a
factor of 4. A summary of these results can be seen in 4.
More importantly, our throughput for the convolutional lay-
ers is within a factor of 4 of Caffe’s ideal GPU performance
on the NVidia GeForce Titan with CuDNN support. This
indicates that, in terms of monetary cost, we should poten-
tially reconsider how much we rely on GPUs for large-scale
CNN training.

We also were able to demonstrate that our system also
achieves the same statistical correctness as Caffe; using CcT
instead of Caffe will provide the same model weights after
any number of training iterations (within a reasonably tol-
erable amount of noise). Figure 2 demonstrates that CcT

2

Ti
m

e
(s

ec
on

ds
)

Output Channels

0.1

1

10

100

0 100 200

Execution Time

Type1

Type3

Ti
m

e
(s

ec
on

ds
)

Input Channels

0.1

1

10

0 100 200

Type1

Type3

GEMM Throughput

G
FL

O
PS

Batches

1

10

100

1 10 100

Type1

Type3

Figure 3. This illustrates the tradeoff curve between Plan 1 and Plan 3 of the different lowering strategies. Plan 2’s implementation was
significantly slower, so we did not include it in this graph. One area of future work that we’d like to focus on is optimizing Plan 2 in order
to examine its potential benefits within this tradeoff space.

does in fact converge on the 1% ImageNet dataset at the
same rate as Caffe.

In terms of the trade-offs between the different lowering
strategies, our results show that when the number of output
channels is smaller than the input channels, Plan 3 outper-
form Plan 1. However, when the number of output channels
is larger than the input channels, Plan 3 pays a large cost in
generating a much larger result by the matrix multiplication
kernel. These trade-offs can be seen in Figure 3.

Lastly, we examined the degree of parallelism of our sys-
tem by focusing on the potential speed-up when increas-
ing the number of threads and the batch size during train-
ing. For the batch size, there is a significant trade-off here:
memory consumption increases linearly with batch size. As
shown in Figure 6, we see diminishing returns around 8
threads and a batch size of 100. This is somewhat surpris-
ing, as the RAM consumption for a batch size of 100 is still
less than 2 GB. This is something that we’d like to further
examine in the future; the most likely culprit of this result
is an unintillegent strategy in parallelizing between batches
of various sizes. Currently, we only adjust the number
of threads at compile-time, rather than at run-time, which
means we may not be partitioning the batch size effectively.

5. Future Work

In addition to the problems we previously identified,
we’d like to explore several other optimizations that we be-
lieve can further improve our system. Currently, CcT only
supports a particular lowering plan at compile-time; we’d
like to improve this by designing a more intelligent system
that chooses the appropriate lowering plan at run-time in-
stead. We currently also have an un-optimized version of
the Plan 2 lowering that yields very poor throughput; this
needs to be optimized so that we can examine its trade-offs

against Plans 1 and 3.
In terms of broader improvements, we’d like to explore

other strategies for improving convolutional performance
for both CPUs and for GPUs. For GPUs, recent work has
shown that the Fast Fourier Transform may yield signifi-
cant improvements compared to current frameworks [9].
We can also improve our approach to parallelism; currently,
we only use data parallelism to improve our performance,
but recent work in the literature suggests that that may not
necessarily be the best approach. For example, while data
parallelism may work well for the convolutional layer (due
to its limited set of free parameters), this may not work well
for fully-connected layers. For the latter case, model par-
allelism may be a better approach [7]. We wish to further
explore this and integrate it as part of CcT.

References
[1] J. Bergstra, O. Breuleux, F. Bastien, P. Lamblin, R. Pascanu,

G. Desjardins, J. Turian, D. Warde-Farley, and Y. Bengio.
Theano: A cpu and gpu math compiler in python.

[2] K. Chellapilla, S. Puri, and P. Simard. High Performance
Convolutional Neural Networks for Document Processing. In
G. Lorette, editor, Tenth International Workshop on Frontiers
in Handwriting Recognition, La Baule (France), Oct. 2006.
Université de Rennes 1, Suvisoft. http://www.suvisoft.com.

[3] S. Chetlur, C. Woolley, P. Vandermersch, J. Cohen, J. Tran,
B. Catanzaro, and E. Shelhamer. cudnn: Efficient primitives
for deep learning. arXiv preprint arXiv:1410.0759, 2014.

[4] R. Collobert, K. Kavukcuoglu, and C. Farabet. Torch7: A
matlab-like environment for machine learning. In BigLearn,
NIPS Workshop, number EPFL-CONF-192376, 2011.

[5] M. Garland, S. Le Grand, J. Nickolls, J. Anderson, J. Hard-
wick, S. Morton, E. Phillips, Y. Zhang, and V. Volkov. Paral-
lel computing experiences with cuda. IEEE micro, (4):13–27,
2008.

3

Sp
ee

d
up

Threads

0

2

4

6

0 8 16

Speed Up

Sp
ee

d
up

Batch Size

0

2

4

6

0 100 200

RAM Consumption

G
By

te
s

Batch Size

0

1

2

0 100 200

Figure 6. The effects of batch size and number of threads on the throughput of the GEMM kernel. This was run on 8 physical cores, which
could potentially explain the drop-off in throughput after 8 threads.

[6] Y. Jia, E. Shelhamer, J. Donahue, S. Karayev, J. Long, R. Gir-
shick, S. Guadarrama, and T. Darrell. Caffe: Convolu-
tional architecture for fast feature embedding. arXiv preprint
arXiv:1408.5093, 2014.

[7] A. Krizhevsky. One weird trick for parallelizing convolutional
neural networks. arXiv preprint arXiv:1404.5997, 2014.

[8] A. Krizhevsky, I. Sutskever, and G. E. Hinton. Imagenet clas-
sification with deep convolutional neural networks. In Ad-
vances in neural information processing systems, pages 1097–
1105, 2012.

[9] N. Vasilache, J. Johnson, M. Mathieu, S. Chintala, S. Piantino,
and Y. LeCun. Fast convolutional nets with fbfft: A gpu per-
formance evaluation. arXiv preprint arXiv:1412.7580, 2014.

4

Figure 5. The per-layer forward pass execution time (ms) for a sin-
gle iteration of AlexNet. Plan 1 was used as the lowering strategy.
Layers ordered by longest runtime in CcT.

5

