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Abstract

In this work, we examine how sensitive the convolu-
tional neural network model is to noise in the training set,
particularly when the training set contains mislabeled or
subjectively-labeled examples. We first test the robustness
of the standard convolutional model by randomly permut-
ing the labels of the training set with increasing frequency,
and plotting the corresponding change in classification ac-
curacy. Next, we implement a robust loss function proposed
recently by Reed et al., which attempts to account for weak
labeling in the training set by mixing the observed training
targets with the model’s predicted class probabilities. Fi-
nally, we implement an extension of the robust model which
dynamically adjusts the mixing parameter, to increase our
confidence in the model’s predictions as they become more
accurate.

1. Introduction

A major goal of computer vision concerns image clas-
sification, distinguishing images by assigning them labels
based on their content. The majority of the successes
acheived in this domain have been models trained on su-
pervised, hand-labeled image datasets. More precisely, the
images used to build these models (for example, the MNIST
handwritten digits, and ImageNet) were assigned labels in-
dividually by people in a consistent manner. Extending
these results to the vast majority of image datasets, which
have either no human-assigned labels, or far less consis-
tent labeling schemes, is a topic of much recent research in
computer vision. In particular, some of the largest labeled
image datasets available can be found on social media web-
sites, where labels are assigned by vast numbers of different
users, and as a result are far less consistent than those of
hand-labeled datasets such as ImageNet.

While convolutional neural networks have been found
to perform exceedingly well on datasets with consistent la-
belings, there is still work to be done on generalizing their
performance to datasets with weak labels, where the labels
do not consistently correspond to the image content. As a
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step in this direction, in this paper we investigate how sen-
sitive the convolutional neural network model is to misla-
beled training data, and examine some proposed methods
for making the model more robust to weakly labeled im-
ages. A good understanding of how much error a convolu-
tional neural network can handle in the training set could
inform researchers as to how well they might expect the
model to work on real world, highly imprecise image data.

When building a classification model for weakly labeled
data such as social media photos, a typical approach would
be to train the model on a dataset with more precise label-
ing, and then to use it to generate predictions on a more
general dataset. One limitation of this model is that the la-
bels found in the test data (or real-world data) are often not
included in the training set, so that it becomes difficult to
generate predictions outside the label domain of the train-
ing set.

Another possible approach is to train on a sample of the
weakly-labeled data, and then use the model to predict on
a held-out test set. This model is not inherently limited to
making predictions on a smaller, precisely-labeled subset of
the real-world data. However, including weakly-labeled or
mislabeled data in the training set could very likely ruin the
prediction performance of the model.

As such, there would be a number of benefits to knowing
the extent to which convolutional neural networks are robust
to weakly-labeled or mislabeled data being included in the
training set. First, many of the largest image datasets avail-
able are those extracted from social networking websites
such as Facebook, Instagram, and Flickr. However, as these
datasets’ images are labeled by users, building a consis-
tent model on a precisely labeled training set is very labor-
intensive, and also may not be generalizable to a broader set
of social media images, due to the issues discussed above.

2. Related Work

The motivations for research on training machine learn-
ing algorithms on noisy labels are numerous. First, as doc-
umented by Sorokin and Forsyth, collecting labeled data
can be costly. Convolutional neural networks, given their
high model complexity, require large amounts of data to ef-



fectively train and thus are limited by the size of existing
datasets. Large datasets of high quality are of great impor-
tance as is evidenced by the popularity of ImageNet. How-
ever, an alternative approach to obtaining training data is
to tap into existing datasets (often user generated datasets).
However, these dataset are notoriously unreliable. Nonethe-
less, the scale of these datasets have the potential to offer
new grounds for experimentation. Next, we discuss a few
approaches for training in these noisy environments.

Previous work investigating the robustness of convolu-
tional neural networks to noisy training data generally fo-
cuses on either introducing visual noise to the training data,
or dealing with training data with many missing labels
(semi-supervised learning). However, there have been a
number of works dealing directly with the issue of weakly-
labeled training set as well. For example, a paper published
by Mnih & Hinton (2012) detailed robust loss functions for
two particular types of mislabeled data points in a particular
type of dataset (aerial images). A more general approach
is found in a paper recently submitted for publication by
Reed, et al. entitled “Training Deep Neural Networks on
Noisy Labels with Bootstrapping,” which explores the sen-
sitivity of convolutional neural networks to noisy labels by
simulating noise in a training set. The authors also propose
a class of more general modified loss functions which they
claim increases robustness to noisy labeling. The authors
test their proposed model on a variety of publicly avail-
able datasets (MNIST handwritten digits, the Toronto Face
Database, and the ILSVRC2014 detection challenge data).
It is worth noting that the authors acknowledge the inspi-
ration of a technique called minimum entropy regulariza-
tion, originally detailed in papers by Grandvalet & Bengio
(2005, 2006), which improves predictions on unlabeled ex-
amples without a generative model, instead incorporating
the model’s own predicted class probabilities to adjust tar-
gets. This is similar to the robust loss detailed by Reed, et
al., which adjusts targets on weakly-labeled training data by
weighting the weak labels with the predicted class probabil-
ities.

We have implemented some of the loss functions detailed
in the paper by Reed, et al., and have tested it on a subset
of the ImageNet dataset, as we describe in section 4 below.
The particular scheme for generating noise in ImageNet will
be described in section 3.

3. Approach

In order to design experiments to test the robustness of
the convolutional neural network model to weakly-labeled
training data, it is necessary to design a scheme in which
noise can be introduced to the training set in a controlled
manner which can be measured. Though there is an abun-
dance of weakly-labeled data (largely, as noted before, on
social media websites), we lack a metric to determine pre-

cisely how noisy the labels of these datasets are. In the fol-
lowing sections, we discuss our considerations in modeling
noise in the training set.

3.1. Sources of Noisy Labels

Our primary consideration is to simulate noise in a train-
ing set which is generated in a manner that mimics, in some
way, the way noisy labels are generated in weakly-labeled
datasets in the wild. To get an idea of how some of these la-
bels might come about, we looked at a random set of labeled
photos from Instagram, and examined the labels which we
might consider to be weak (in the sense that they do not
clearly reflect the content of the image).

Among the most common situations arises when a label
in fact describes the situation of the image appropriately, but
the vantage point of the camera obscures the content (e.g. a
photo labeled “bicycle” taken from the point of view of a
person riding a bicycle; a more apt descriptor of the visual
content of the image may have been “road”). Another com-
mon situation arises when an image is given a description
associated with its content only abstractly (e.g. an image of
a man on a couch labeled “bear”). Unlike the first type of
weak labeling described above, these labels have the addi-
tional weakness of mislabeling to a class that may share no
visual features with the visually-appropriate class.

We considered the possibility of devising a metric of
similarity between classes (this could be computed from the
similarity of the class probabilities, for example), so that
when an image of a class is intentionally mislabeled, the
distribution from which its label is selected weights classes
which are ‘closer’ to it more heavily than others. This
would reflect the first situation, in which weakly assigned
labels are still similar to the more appropriate label in some
way. However, a more conservative approach is to view
mislabelings in the second sense above, in which there is no
apparent visual connection between the images of the two
classes. In this scenario, we can permute the class labels
without worrying about which specific mislabelings occur,
and is thus also a simpler model (in addition to being more
conservative, since the noise is arguably less controlled).

3.2. Simulating Noisy Labels

In this section we describe the particular approach we
took to simulate noise in the training set. As explained
above, we decided not to distinguish between classes when
intentionally mislabeling data, instead choosing new labels
from a uniform distribution over the labels. We propose
that one can approximate the effect of weakly labeled train-
ing data on prediction performance by randomly permuting
the labels of subsets of strongly labeled datasets. In partic-
ular, we plan to train a sequence of N convolutional neu-
ral networks M,, on a subset of the ImageNet dataset, such
that every training data point in model M,, is randomly as-



signed a new label with probability p,,, where p,, will range
from zero to one. After obtaining test set prediction errors
for each model M,,, we can get an idea of the relationship
between the mislabeling metric parameter p and the model
prediction error.

We anticipated, at the very least, that increasing p will in-
crease prediction error. However, the nature of this increas-
ing function is what we are interested in. If the increase
in error can be well-approximated by a convex function,
it will strongly suggest that standard convolutional neural
networks are relatively robust to mislabeled training data.
Otherwise, if the relationship between mislabeling and pre-
diction error can be better approximated by a linear (or con-
cave) function, the results will suggest that we can expect
our prediction error to increase consistently (or rapidly) as
the proportion of mislabeled data increases. Such a result
would inform the use of convolutional neural networks in
practice for classifying social network image data, indicat-
ing how weakly-labeled of a dataset can be used for model
training. We will discuss the results of this experiment in
section 4.2 below.

3.3. Measuring the Results

Of course, assessing the robustness of convolutional neu-
ral networks to weakly labeled data by measuring its robust-
ness to explicitly mislabeled data is at best an approxima-
tion to the truth. However, it seems likely that the sensitivity
to weak labels should be bounded below by the sensitivity
to explicitly mislabeled data. That is, the data labels on
social media sites are likely to be of classes related to the
content of the actual image, and not explicitly mislabeled.
A possible extension of our work would be to limit the ran-
dom reassignment of image labels to labels similar to the
correct ones (in accordance with that social media users do
not randomly mislabel their images), or to instead introduce
random noise images (from social media, or from a held out
set) to each training set class with increasing proportions,
and see how this changes the classification error.

4. Experiments

4.1. Testing Robustness of ConvNets to Noisy Labels

Our first experiment was concerned with determining the
relationship between frequency of label permutation and
classification accuracy of a standard convolutional neural
network model. In this section we detail the approach, con-
siderations, and result

4.1.1 Model Considerations

As we compare the models of varying permutation fre-
quency p, there are a number of considerations which can

adversely affect the results of our experiment, and thus need
to be treated carefully, or at least acknowledged.

The first, and most problematic, is the determination of
appropriate model hyperparameters.

First, we we will train a standard convolutional neural
network on a subset of the ImageNet dataset, and tune the
model’s hyperparameters to achieve maximum validation
accuracy, as usual. Our initial assumption is that for very
small changes in p (the mislabeling proportion), the opti-
mality of a set of model hyperparameters will not change
much. With this admittedly naive assumption, we will train
a sequence M,, of models as described in the previous sec-
tion, keeping the hyperparameters the same throughout, and
storing the prediction error of each model on a fixed test set.

It is of course possible that the result is very sensitive to
hyperparameter settings as the frequency of permutation p,,
increases, and one could take a number of approaches to fix
this. One would be to optimize at each model M,,, to pro-
duce a sequence of hyperparameter-optimized models. A
benefit of this is that it gives us a better approximation of
the upper bound of error at each n. Another option is to
randomly sample many hyperparameter settings for each n,
and to simply store all of them. Then one could produce
a plot of the different outcomes for classification error for
each n, and statistically fit a curve to the data to estimate
what the general shape of the relationship between classifi-
cation error and mislabeling rate is.

4.1.2 Implementation Details

As described above, we trained a sequence of three-layer
convolutional neural networks which vary the frequency
of permuted training labels. Specifially, the models were
trained for 20 epochs using a softmax loss function, and the
model’s structure is two conv-relu-pool layers followed by
an affine layer. While it is very possible that the optimal
hyperparameter settings (specifically, learning rate, regular-
ization strength, and batch size) are sensitive to the per-
mutation frequency p, we decided to optimize the hyper-
parameters only for the initial, unpermuted model, and to
hold the settings constant as we increased permutation fre-
quency. While this may lead to suboptimal results, we can
be reasonably confident that the accuracy val,, we observe
for model M, is an underestimate of what one would ob-
tain if one were to re-optimize the hyperparameters, and so
the curve we obtain estimating the decay of classification
accuracy with increasing permutation frequency is likely a
lower bound of the true decay curve.
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Figure 1. Average test accuracy over 5 repeated simulations with
given parameters. Shaded regions represent 2 point-wise stan-
dard errors

4.1.3 Results

Here we present the results from varying the level of train-
ing label noise. With no training label noise the regular
softmax model achieves a mean test error of 71%. Then,
for increasing levels of label noise the training accuracy de-
creases. In our experiments the relationship appears to be
approximately linear where an additional 10% noise cor-
responds to a 4% reduction in test accuracy. The normal
baseline model is somewhat resistant to noise even without
using a robust loss function. With noise levels of up to 50%,
the model achieves roughly 50% test accuracy.

Softmax
Average test accuracy and standard deviations

mean accuracy stdev
noise fraction
0.0 71.78 0.65
0.1 67.64 1.49
0.3 61.46 1.12
0.4 57.40 1.48
0.5 52.38 1.32
0.6 47.96 1.35
0.7 41.98 1.07

4.1.4 Topics for Further Research

A simple extension to this experiment would simply be to
train a costlier and more accurate base model, for example

using a much deeper network, training for far more epochs,
or training on a bigger dataset (tiny ImageNet for a similar-
sized set with more classes, or full ImageNet if feasible).
Another possibility is to optimize the hyperparameter set-
tings iteratively for each new model M,,, to try and obtain a
tighter lower bound estimate for the decay curve of classifi-
cation accuracy as p,, increases.

Another interesting approach would to find out at what
level of the neural network hierarchy the mislabeled data
does the most damage to the model. It is often hypothe-
sized that in a deep convolutional neural network, the model
‘learns to see’ in the middle layers of the network, and
adapts its understanding to the specific classes and dataset
in the parameters closer to the network’s output. It would
be interesting to investigate whether training the model with
randomly mislabeling data points only really affects the
model’s adaptation to the specific data, or if it actually af-
fects the model’s fundamental understanding of vision.

If the latter is the case, then we hypothesize that if in-
stead of training a full model from scratch using the misla-
beled dataset, we did transfer learning by attaching a model
trained on correctly labeled data to our partially mislabeled
training labels, we might actually obtain better classifica-
tion performance. If this were the case, then an approach to
classifying noisy social media datasets would be to train the
model initially on a precisely labeled dataset, and then to
use the parameters to initialize the final model on the noisy
dataset.

Conversely one could also try training two convolutional
neural networks, one on a weakly-labeled training set (in
this case, with random label permutations) and one on a cor-
rectly labeled dataset, and transfering the resulting param-
eters to a model to be trained on a new dataset, examining
how much worse the randomly permuted transfer model is.

4.2. Robust Models

In this section we detail the approach we used and the
results we found by implementing the robust loss-adjusted
convolutional neural network model proposed in the paper
by Reed, et al.

4.2.1 The Model

The proposed model replaces the traditional softmax loss by
a loss which takes into account for each data point (X, y;)
both the observed weak class label y; (where we instead
use an indicator notation with a vector ¢; for which ¢;; =
1y,=;}), as well the vector p; of class probabilities output
by the model.

The paper proposes two different robust loss functions,
which it denotes soft bootstrapping and hard bootstrapping,
respectively.



The soft bootstrapping loss considers a convex combi-
nation of the quantities, 8¢;; + (1 — 8)p;; as a metric for
the membership of data point ¢ belonging to class j. Here,
[ is a hyperparameter of the model which must be decided
by cross-validation. We will discuss some results about 3
afterwards.

In accordance with the softmax loss, the loss function
takes the form

Lsogt = Z Z(ﬁtzj + (1= B)pi;) log pij.

i=1 j=1

In contrast, the hard bootstrapping loss does not take into
account the distribution of the model’s predicted class prob-
abilities over all classes, instead only taking the class of
maximum predicted probability into account. Therefore the
loss function takes the form

Lnara = Y Y _(Btij + (1 — B)zi;) log pij,

i=1 j=1

where z;; = 1{j—agmaxp;;,j=1,..,m} IS an indicator for
whether j is the class of highest predicted probability by
the model for data point .

4.2.2 Implementation Details

As in the previous experiment, we implemented sequences
of convolutional neural network models Mard pfsoft
with proportion p,, of the training labels permuted, where
the superscripts specify the robust loss function used in the
implementation. To best be able to meaningfully compare
the results of these experiments with those of the previ-
ous one, we changed as little as possible about the model’s
setup. In particular, the model structure and depth were
held constant throughout, with two conv-relu-pool layers
and one affine layer, and all experiments were ran for 20
epochs.

Though it is very likely that the optimal learning rate,
regularization strength, and batch size change with the loss
function and the mixture parameter 3, we decided use the
same hyperparameters from the previous experiment, opti-
mized for the model with softmax loss and no permutation
(that is, p = 0 and 8 = 1), and to hold these parameters
constant on all modified models thereafter. We recognize
that this is a possible confounding variable in the results of
the experiment. However, as the classification accuracy for
all models (that is, varying the choice of loss function and
varying ) with p = 0 is roughly the same for the hyper-
parameter settings we used, it doesn’t appear that we are
losing too much information by keeping the same hyperpa-
rameters. As discussed earlier, the decaying classification
accuracy with p we observe is likely an underestimate of
the true accuracy. A possible topic for further investigation

is to repeat these experiments, re-optimizing the hyperpa-
rameters as the we vary the loss function and .

4.2.3 Annealing the mixture parameter

Concerning the setting of the mixture parameter 3 in the
robust loss functions, we first note that by taking § = 1,
we can reduce the both the soft and hard bootstrapping loss
functions reduce to the traditional softmax loss (and thus re-
duce the model to a standard convolutional neural network
model). Reed, et al. specify that they found 5 = 0.95 to
work best for the soft bootstrapping loss, and 5 = 0.8 for
hard boostrapping, on the datasets they examined.

We trained models using the robust loss functions and a
variety of settings of (3, to see whether any improvements
could be made by increasing the confidence allotted to the
model predictions. In particular, in addition to 5 = 1, we
trained models with 8 = 0.9, 0.8. The results of these pre-
liminary experiments are described in the next section.

As an extension of the robust models proposed by Reed,
et al., we examined the effect of annealing the value 3 over
time, in a sense growing to trust the predictions of the model
more (and the observed labels less) as we train for more
epochs, and the model becomes more confident in its pre-
dictions. Of course, the annealing rate of 3 is a new model
hyperparameter which we had to decide how to implement.
Since 1 — 3 reflects our confidence in the model’s predic-
tions, we concluded that (a) initializing 8 = 1 is sensible,
since at initialization we do not trust our model’s predic-
tions at all; and (b) that 3 should decline as the validation
accuracy increases. Since validation accuracy generally in-
creases with the number of epochs, one possibility is to sim-
ply increase 3 by some fixed amount at each epoch. How-
ever, the natural setting 5 = 1 — val, where val is the vali-
dation accuracy, and since we compute val at each epoch in
our training process, we simply set 3 = 1 — val at the end
of each epoch. The results of this extension are discussed in
the following section as well.

4.2.4 Results

Here we examine the results from the two bootstrapping
methods with the baseline softmax model. We highlight
three models for this analysis. First, we compare hard
bootrapping for different parameter settings of beta. We
also compare the results to our two new proposed beta an-
nealing methods. We find that for hard bootstrapping, mild
annealing works best and for soft bootstrapping aggressive
annealing worked best but the results were mixed.
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Figure 2. Average test accuracy over 5 repeated simulations with
given parameters. Shaded regions represent 2 point-wise stan-

dard errors
Hard Bootstrapping
Average test accuracy (%) relative to softmax
anneal method mild aggressive fixed
(or beta level) annealing  annealing beta=0.8
noise fraction
0.0 0.625 -2.425 -0.625
0.1 2.250 -1.650 2.250
0.2 -0.175 -2.325 0.325
0.3 0.450 -2.750 -2.650
0.4 1.250 -0.500 0.100
0.5 -0.300 -0.800 3.000
0.6 1.400 -3.500 1.300
0.7 1.400 -4.400 1.900
0.8 3.900 -12.800 1.200
Soft Bootstrapping
Average test accuracy (%) relative to softmax
anneal method mild aggressive fixed
(or beta level) annealing  annealing beta=0.8
noise fraction
0.0 -0.525 -0.175 1.525
0.1 0.050 -0.150 0.350
0.2 -0.975 -1.175 -0.075
0.3 -1.750 0.950 -1.250
0.4 1.000 0.500 -0.250
0.5 -1.400 2.500 -0.100
0.6 -0.250 -0.500 0.600
0.7 1.600 3.100 0.500
0.8 3.600 4.100 3.200

5. Conclusions

We conclude from our first experiment that the convo-
lutional neural network model without any modification is
surprisingly robust to random noise in the training labels.
As shown in the plot of figure 1, we observed that permut-
ing 70% of the training labels caused less than a 50% de-
crease in classification accuracy. We speculate that if we
had trained deeper models with higher initial classification
accuracy (that is, with p = 0), this proportional rate of de-
crease in accuracy would persist. This guess is supported
by the results found by Reed, et al. in their work, as well.

In our second experiment, we found that between the two
robust loss functions proposed, the hard bootstrapping loss
performed consistently better than the standard softmax loss
function, while the soft bootstrapping yielded mixed results.
We observed, as well, that our modification of annealing the
mixture parameter 3 as validation accuracy improves the
model’s robustness to noisy training labels further.
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