
Recurrent Neural Networks and Transfer Learning for Action Recognition

Andrew Giel
Stanford University
agiel@stanford.edu

Ryan Diaz
Stanford University

ryandiaz@stanford.edu

Abstract

We have taken on the task of action recognition, the clas-
sification of videos depicting human action from the UCF-
101 dataset. In this paper, we present our experiments
with a variety of recurrent neural networks trained on se-
quences of CNN ‘codes’ generated by AlexNet. Our re-
sults with these models indicate similar performance en-
hacements over baseline methods as found in modern lit-
erature, as well as demonstrate the representational power
allotted by transfer learning from large, deep nets trained
on massive datasets.

Introduction

Image classification via convolutional neural networks
(CNNs) has been the focus of much of the academic
landscape in the field of computer vision, yet video
classification has been less developed. The task of action
classification is notoriously difficult - even with advances
in image classification, videos pose a unique challenge
as one frame is often insufficient information for proper
classification. The best way to incorporate temporal
features into the CNN framework has been unclear, with
research into fusion techniques as well as distinguishing
the spatial-temporal streams using optical flow.

Recurrent neural networks (RNNs) have proven to
be powerful tools for tasks with a focus on temporal
sequences, such as natural language processing and speech
recognition. The research into using these networks
for video classification is limited at best, and is an excit-
ing marriage of spatial and temporal information extraction.

Related Work

Our research is inspired by similar work in the task of
video classification via convolutional neural nets and by
advances in state-of-the-art image classification.

Karpathy, et al. [5] present video classification taken
to the extreme scale, with over 1 million videos and 487

classes. The most interesting aspect of this paper from
our perspective is the notion of fusion. Karpathy, et al.
experiment with a variety of architectures for ‘fusing’
network representations of frames over time. This is
achieved by extending the convolutional filters over time
and by concatenating separate convolutional outputs.
The results of the paper show that combining these two
temporal techniques into an architecture known as ‘Slow
Fusion’ consistently performs better than either one of these
individually and better than the single-frame classifiers.
Additionally, this paper presents a transfer-learning result
on UCF-101, the dataset we are working with, claiming that
a transfer learned model performs better on UCF-101 than
a standalone model. The more significant conclusion here
is that there SPORTS-1M trained network has significant
representational power, but for our purposes at the very
least it shows that good results can be obtained on UCF-101
by transfer learning from a deep network trained on large
amounts of data. This paper motivated our interest in video
classification by emphasizing the need for practices to
incorporate temporal information into the CNN framework
so successful at image representation.

Simonyan, et al. [7] present a two-stream network for
video classification on UCF-101. This two-stream ap-
proach focused on separating the notion of the spatial and
temporal information presented in video by creating two
networks each with separate classification scores which are
combined to produce the final output. The spatial network
took a single frame as input, similar to many CNNs used
for image classification. The more interesting component
in terms of our research is the temporal stream network.
The temporal stream was made by creating 2 channels
for each frame, one for horizontal optical flow between
consecutive frames and one for the vertical optical flow.
Although this utilizing of hand-made features to represent
temporal information may be contradictory to many of
the goals of ‘deep-learning’, this paper’s results speak for
themselves. The authors claim this two-stream network
outperforms the Slow Fusion from [5]. This paper serves as
a alternate way to represent temporal information in CNNs
as opposed to [5] and encourages us to experiment with

1



new ways to do so.
Recent publications show promising results with the use

of recurrent nets on video. Much of this project is based
on a model architecture known as LRCN, demonstrated by
Donahue, et al. in his paper Long-term Recurrent Convo-
lutional Networks for Visual Recognition and Description
[2]. This paper outlines a model which first performs
feature extraction over a sequence of T inputs then passes
the extracted features to a sequencing model. In particular,
for the task of Action Recognition, Donahue presents
feature extraction in the form of large, deep CNNs and
sequence models in the form of two-layer LSTM models.
In experiments on UCF-101, the LCRN models perform
very well, giving state of the art results for that dataset. In
addition to Action Recognition, Donahue presents similar
models created for the task of both Image Description
and Video Description, demonstrating that this framework
of extraction and then sequencing can be generalized to
many other tasks. This paper is the main inspiration for
our project, as it demonstrated not only the flexibility
and representational power of CNN ‘percepts’ but also
the capabilities of RNNs and RNN variants for sequence
modeling simultaneously.

In an extremely recent publication, Srivastava, et
al. [9] present an unsupervised technique for creating
video representations using LSTMs. Using an LSTM
Encoder-Decoder scheme given ‘percepts’ from previously
trained CNNs, the authors were able to make qualitative
assessments of their model by having it predict either
the future sequence given an input sequence or an input
sequence given an encoded representation. They found
that their model seems to contain sufficient information
regarding appearance and motion from these experiments.
Additionally, they were able to qualitatively assess their
model on UCF-101. This was attempted with both ‘per-
cepts’ from CNNs trained on RGB and temporal flow data.
The authors were able to report significant improvements
over baseline models, especially when training on less data
per action class. Additionally they were able to compare
their results to other state-of-the-art classifiers in the RGB,
temporal, and combined space and found that their model
was competitive if not better across these input spaces. This
paper helped showed us that the use of specialized RNNs
of many varieties can be effective for use with video.

Problem Statement
Our task is to take a short video clip and classify the ac-

tion taking place within the video. More specifically, our
task is to classify 10 consecutive frames of size (320 ×
240×3) into one of 101 classes ranging from ‘Applying Eye
Makeup’ to ‘Kayaking’ to ‘Yo Yo’. As such, we are training
some function h(x) : X 7→ y where X ∈ R10×320×240×3

Figure 1. Sample images taken from classes of UCF-101

and y ∈ [1, 101].

Data Processing

One of the biggest challenges we faced while classifying
videos was simply processing the data from .avi format to
something we could feed to our neural networks. Convert-
ing an .avi to a tensor of floats results in incredible amounts
of memory storage, to the point where we couldn’t even
store the entire dataset on our personal laptops or cloud
instances. As a result, we heavily sub-sampled the data,
giving us a representative window into each video. We
sampled 10 frames evenly distributed over the first 2 sec-
onds of each video, allowing us to have a tractable amount
of tensor data for us to process and utilize effectively.

We locally processed the .avi videos and then uploaded
the numpy tensor representations to our cloud instance.
Resizing each frame to run using the pretrained CaffeNet
model we were able to extract the last fully connected
hidden layer to represent each frame, storing the new rep-
resentation of each video to disk. This 4096 dimensional
representation drastically downscaled our data and allowed
us to efficiently train our models.

Dimensions Storage
Original Video Frames 300 ×320× 240× 3 275MB

Subsampled Frames 10 ×320× 240× 3 9MB
CNN Codes 10 ×4096× 1× 1 160kB

In order to transfer learn from a pretrained Convolutional
Neural Network to our video classification task we fed
frames of each video through the BVLC Caffe Net Model

2



Figure 2. Data Processing Pipeline

Figure 3. A subset of CaffeNet learned filters, which contribute to
the generalizable representational power of large CNNs and allow
for transfer learning

using the Caffe deep learning framework. We used the
codes from the second to last fully connected layer (FC7)
to get a 4096 dimensional representation of each frame.
This is standard practice for many transfer learning tasks.

Given our limited data, training our models from scratch
was not likely to produce the best possible results. As
demonstrated in Yosinki, et al. [4] transfer learning from
deep convolutional network trained on large amounts of
data has been shown to be effective across image datasets.
This is due to the fact that the image features extracted
by convolutional networks which have been exposed to
large image datasets generalize to many other domains. We
used CaffeNet, an implementation of AlexNet[6], to extract
features, allowing us to take advantage of features learned
on the massive ImageNet dataset.

Models
We experimented with a variety of models, specifically

hoping to encapsulate the temporal change between frames

Figure 4. Our transfer-learned LSTM model

by using Recurrent Neural Networks.
Our first model, which we will refer to as the ’Average’

Model, was a simple model which took the CNN codes of
all 10 frames, averaged them, and fed them to a 2-layer
fully connected neural network, utilizing the ReLu activa-
tion function and dropout. The intuition behind this model
is that the CNN codes have enough representability alone to
get a good idea of what is going on in the video clip, and
averaging them incorporates all the frames evenly. This in-
tuition also comes as a function of the dataset; many of the
activities are spatially distinct enough that no temporal in-
formation is necessary to make decent estimates of activity.

Our second model we will refer to as the ’RNN’ Model.
Recurrent Neural Networks are run over sequences, with
hidden layer activation at time t defined as a function of
both the input at time t and the hidden layer from the pre-
vous time t − 1. More formally, given an input sequence
x = {x1, ..., xT }, the hidden layer activation at time t, de-
noted ht, is defined as

ht = a(Wihxt +Whhht−1 + bh)

where Wih is the weight matrix from input to hidden layer,
Whh is the weight matrix between hidden layers, bh is the
bias for the hidden layer, and a is the activation function (in
this case ReLU). Once ht is computed, the output for time
t, denoted yt, is defined as

yt = Whoht + bo

where Who is the weight matrix from hidden layer to output
and bo is the bias for the output of the recurrent layer.

For our implementation of the RNN model, we fed the
10 CNN codes from the 10 frames to a ’vanilla’ recurrent
layer, calculated the probability of each class using Softmax
at each layer, and then averaged the probabilities over each

3



Figure 5. A diagram depicting the LSTM unit and its gates.

time step. More formally, our prediction p ws defined as

p = argmax
i

1

T

T∑
i=1

g(Wsyi + bs)

where Ws is our weight matrix from recurrent layer output
to 101 class scores, bs is the bias, and g(z) is the softmax
function. Thus we weight each timestep’s class prediction
equally, as opposed to alternatives such as only taking the
last frame’s prediction.

Our third model we will refer to as ’LSTM’ Model. This
model is exactly the same as the RNN model, but replacing
the ’vanilla’ RNN with a Long Short-Term Memory Layer.
LSTMs have shown promise and are preferred to ’vanilla’
RNNs for many tasks. LSTM units consist of three gates,
known as the input gate, forget gate, and output gate. The
inclusion of these gates is motivated by the regulation of
information flow through the computational unit, allowing
for more stable gradients and long-term sequence depen-
dencies. The inner workings of LSTM is not the focus of
this paper, yet many resources such as Grave’s paper Gener-
ating Sequences With Recurrent Neural Networks [3] serve
as good introductions to the computational unit and its us-
ages. The hope for this model was that the complex internal
mechanisms would outperform the ‘vanilla’ recurrent neu-
ral networks.

Our last model, which we will refer to as ’Bidirec-
tional RNN’, was a bidirectional recurrent neural network.
Whereas our ’RNN’ model only incorporated temporal in-
formation using the previous frame, our bidirectional net-
work had recurrent layers which examined the next frame
as well. Our CNN codes were fed to two layers, one work-
ing through the sequence forward in time and another layer
which ran the sequence back in time. The forward layer’s
hidden layer activation hf

t , was identical to our ’RNN’
model’s activation, while the backward layer’s hidden layer

Figure 6. Our transfer-learned bidirectional recurrent neural net-
work

activation hb
t , was defined as

hb
t = a(W b

ihxt +W b
hhht+1 + bh)

The output of the recurrent layers, yt, was simply the sum
of yft and ybt . Predictions p were calculated in the same way
described for other models.

We experimented with other models that were either in-
effective or not able to be experimented with given time and
resource constraints. Specifically we attempted to do a one
dimensional convolution on the collection of CNN codes
(10 x 4096), this model was extremely unstable in training
with validation accuracy fluctuating drastically regardless
of parameters. It also achieved a much lower classifica-
tion accuracy compared to our final models. We were not
able to implement more complex models like bidirectional
LSTM due to problems with hardware and limited compu-
tation time available.

Experiments
We ran our experiments on the UCF-101 Dataset for Ac-

tion Recognition [8]. With our extracted CNN codes ob-
tained via CaffeNet remaining architecture as implemented
and trained in Theano and Lasagne. As a result, during
training time, there was no finetuning of the CaffeNet. More
explicitly, we only backpropagated into the layers found af-
ter the CNN codes, and did not alter the CNN codes nor the
convolutional neural net which generated them. All our ex-
periments were run on a Terminal.com GPU instance with
10GB of RAM.

Results
Our results can be found below. It should be noted that

while validating our hyperparameters we found that the best
validation set accuracy came when using hyperparameters

4



that massively overfit to our training set, often with training
accuracies >95%.

Model Validation Accuracy Test Accuracy
Average 50.5% 50.0%

RNN 52.2% 49.1%
LSTM 46.7% 45.9%

Bidirectional RNN 51.1% 50.5%

Our results are not state of the art for the dataset nor the ar-
chitecture employed. Nonetheless, we are happy with our
results. Our RNN model and our Bidirectional RNN mod-
els were able to outperform the Average model. In fact,
our results indicate similar performance enhancement over
the Average model as found in the LRCN paper [2]. In the
LRCN paper, when using only RGB inputs, Donahue, et al.
found only 2% increase over their average model, which is
similar to what our results indicate.

Conclusions
We found that our slight improvement in classification

accuracy from using a recurrent architecture was due to tak-
ing advantage of differences between frames. The bidirec-
tional recurrent architecture was able to take advantage of
information from frames before and after it in the video.
These differences resulted in different softmax scores at
each time step and a stronger classification accuracy over-
all.

Our CNN code averaging model was a strong baseline,
achieving nearly as good classification accuracy as the re-
current model. This was due to the dissimilarities between
classes. The UCF-101 data set contains extremely diverse
classes, from ”ApplyingEyeMakeup” to ”Surfing”. Look-
ing at a single frame of the video between very different
classes is sufficient to make an accurate classification. As
Figure 7 shows, the average CNN codes for 10 randomly
selected classes are somewhat clustered showing the aver-
age CNN representation has strong classification power.

Much of our work process was impeded by the ef-
fectiveness and availability of hardware. We used Termi-
nal.com to train our models to take advantage of a cloud
instance with a GPU allowing us to drastically speed up
computations. However, GPU instances were often not
available when we required them for development. Peak
hours of demand were not handled well and hindered us
from implementing more complex models including bidi-
rectional LSTM or double-layer RNNs. Additionally, the
lack of cloud access prohibited us from more extensively
cross-validating our current models. For example, our re-
sults with the Bidirectional RNN model are from a lim-
ited number of experiments searching near the parameters
of previous models, less Terminal.com outages would have

Figure 7. CNN codes of 10 frames averaged for 10 classes visual-
ized with PCA

allowed for more extensive cross validation.
We feel positive about the techniques implemented in

this paper and hope that our results could help to expand
the field of video classification in the future.

Future Work
Expanding upon our current work we hope to have more

extensive data augmentation. Our current feature extraction
pipeline looks at the full resized image to extract its CNN
code, but we hope to experiment with differing crops, flips,
hue/contrast adjustment and the addition of random noise.
In addition to augmenting our data we could improve our
model by fine-tuning the convolutional network we use to
extract our features. This would allow our frame represen-
tations to more accurately depict our classes.

We believe the techniques that we have implemented for
video classification would show drastic improvement with
larger datasets or ones with more similar classes. UCF-101
data has 100-140 videos per-class thus with 10000-14000
datapoints our models didn’t have enough data to build an
extensive representation of the space in which it was classi-
fying over. The models with the highest test and validation
accuracy suffered from high levels of overfitting caused by
a relatively small training set compared to the number of
parameters in our models. After 50-80 epochs the training
accuracy was >90%. Training on a dataset like the Sport-
1M[5] dataset could provide improved results.

Having a dataset which has a more focused domain could
demonstrate a larger positive impact of our recurrent mod-
els. A dataset in which the CNN representation of a sin-
gle frame is more similar between classes would be more
dependent on the changes between frames to make a clas-
sification decision. Experimenting with a dataset such as
the MICC-Soccer Actions 4[1] (no longer publicly avail-

5



able) could improve on previous action classification meth-
ods within that domain.

Including hand-engineered features such as optical flow
could potentially increase the accuracy of our models. The
CNN code representation of each frame captures much of
the spatial information about a scene, but optical flow or
other hand-engineered feature would give our models more
information about the motion taking place. This could be
incorporated as a dual stream model similar to the model
described by Simonyan et. al.[7].

We used the final fully connected layer of CaffeNet
(FC7) to get a representation of each frame. In order to
extract features more relevant to our task we would like to
experiment with feature extraction at different layers of the
network. Lower level layers could have more spatially de-
pendent values which could potentially help our classifica-
tion accuracy. For example, Donahue, et al. found better
results using FC6 in the LRCN paper [2].

Lastly, unsupervised techniques for video classification
using RNNs, such as what is found in [9], seems promis-
ing. With unsupervised techniques, more training data be-
comes available as the need for labeling becomes unnec-
essary. Furthermore, unsupervised techniques can help de-
velop generalizable temporal representations which can be
used to further advance the performance of supervised mod-
els.

We hope to see the further usage of RNNs and similar
sequencing models for video classification in the future aca-
demic landscape.

Acknowledgements
We would like to thank Andrej for his guidance and sug-

gestions. We would also like to thank GitHub user craffel,
whose open-source implementation of both Vanilla RNNs
and LSTMs in Lasagne were modified for use in our exper-
iments.

References
[1] M. Baccouche. Action classification in soccer videos with

long short-term memory recurrent neural networks. 2010.
[2] J. Donahue. Long-term recurrent convolutional networks for

visual recognition and description. 2015.
[3] A. Graves. Generating sequences with recurrent neural net-

works. 2014.
[4] J. C. J. Yosinski. How transferable are features in deep neural

networks? 2014.
[5] A. Karpathy. Large-scale video classification with convolu-

tional neural networks. 2014.
[6] A. Krizhevsky. Imagenet classification with deep convolu-

tional neural networks. 2012.
[7] K. Simonyan. Two-stream convolutional networks for action

recognition in videos. 2014.
[8] K. Soomro. Ucf101: A dataset of 101 human actions classes

from videos in the wild. 2012.

[9] N. Srivastava. Unsupervised learning of video representations
using lstms. 2015.

6


