Learning Control Policies from High-Dimensional
Visual Inputs
CS231n Final Project

Irwan Bello
Stanford University
ibello@stanford.edu

Abstract

We investigate how reinforcement learning can
be combined with convolutional networks to learn
to control an agent from high-dimensional visual
inputs in the context of simple video games. We
apply deep Q-learning to train a network as a Q-
value function approximator on the space of state-
action combinations of a game.

First, we replicate the noted approach [3|] and
train a network to play the simple Atari game
Breakout. Second, we apply common visualiza-
tion techniques to a trained network and pro-
vide analysis of how it works and extracts fea-
tures, concluding that the network is overfitting
to the particular task of playing Breakout. Third,
we discuss the potential directions for future re-
search.

1. Introduction

For a long time reinforcement learning algo-
rithms have been mostly successful in solving
problems with state spaces of low dimensionality.

When applied to tasks that involve high-
dimensional inputs (e.g. pixel data), the prevalent
approach has been to rely on handcrafted features
that condense the relevant information into a low-
dimensional feature representation. The quality

Yegor Tkachenko
Stanford University
yegor@stanford.edu

of such a system depends on the quality of the
feature representation (whether the features allow
for a good reconstruction of the input) and its util-
ity for the original learning problem (whether the
features are actually useful for learning a policy).
(8]

Success has been reported with using neural
networks as a dimensionality reduction technique
and then applying RL in the reduced feature space
[4]. Especially good results were obtained when
the neural network encoder was fine-tuned via a
loss function corresponding to a particular task at
hand. This allowed the system to learn which low
level features are actually important for the task
and then carry out dimensionality reduction while
preserving that information. As an example, di-
mensionality reduction guided by reinforcement
learning would be able to detect that the value of
a particular pixel in the visual input is of great
importance when making a choice on what action
to take and would preserve its value through the
dimensional collapse, embedding it in the high-
level features, whereas dimensionality reduction
without fine-tuning would likely convolute and
lose this information.

However the most radical breakthrough of the
recent years came from using a neural network
as a direct function approximator, linking an ar-
bitrarily complex state space to a Q-value func-



tion [5, 6]. According to the reported results, the
system was able to learn how to play some sim-
ple Atari games using the described approach -
i.e. by taking as inputs the pixel data, information
about the action taken and achieved reward and
ultimately estimating the expected value of each
action for a given point of the state space.

2. Background
2.1. Reinforcement Learning

Reinforcement learning explores a problem,
where an agent tries to maximize a cumulative re-
ward in an a priori unknown environment by re-
lying on interactions with the environment. The
environment can be modelled as a Markov Deci-
sion Process (MDP), i.e. a set of states S, a set
of actions A, a transition function T: S x A X
S — [0, 1], which defines a probability distri-
bution over possible next states given the cur-
rent state and an action, and a reward function
S x A xS — R. The goal of the agent is to
find the policy 7 : S — A that maximizes the
discounted cumulative reward Ry = >~ 7'y
where 7 is a discounted factor between 0 and 1, r,
denotes the reward obtained at time-step t and T
is the current time-step.

Model-free RL algorithms, which learn an opti-
mal policy without constructing an estimate of the
MDP, rely on estimating the action-value function
Q*(s,a), which is the maximim expected cumu-
lative reward achievable when being in state s and
performing action a. Given the action-value func-
tion we then get the optimal policy with:

7(s) = argmaz,Q*(s,a)

The optimal action value function Q* satisfies the
Bellman optimality equation, which is based on
the intuition that the optimal strategy when select-
ing an action is to maximise the expected value of

r+yQ*(s', d’):

Q*(S7 CL) = ESINT(57a7_) [T —+ Y HlE/iJX C)*(S/7 a’) |S/’ a/]

= / T(s,a,s')(R(s,a,s) +ymaxQ*(s',a’)))

The process of iteratively updating () using
the Bellman equation is called value-iteration and
yields a sequence of (); which converges towards
Q* as ¢ — oo [3]]. In our case, value iteration
doesn’t scale because the iterations need to be per-
formed on each state-action pair, without any gen-
eralization.

2.2. Deep Q-Learning and Experience Replay

Instead, deep Q-learning uses a neural net-
work as a Q-function approximator (called deep
Q-network or DQN), which is trained to mini-
mize the L2 norm between the state-action value
predicted by the network and the observed state-
action value experienced by the agent.

Note that reinforcement learning was shown to
be unstable or even to diverge when approximat-
ing the state-action value function with non-linear
functions (such as a neural networks) [[7]].

This instability has several causes which are
rooted in the difference in assumptions made by
supervised learning and reinforcement learning.
Supervised learning assumes that data samples
are independently drawn from a fixed underly-
ing distribution, while RL deals with sequences
of correlated states sampled from a distribution
that changes as the agent adopts new policies over
time. The problem of retaining previously learned
representation while acquiring new ones is known
as catastrophic forgetting and has been shown to
be very acute for neural networks [2]].

To alleviate such issues, deep Q-learning uses
a mechanism called experience replay, similar to
how learning occurs in the hippocamp region of
the brain [6]: the DQN is trained on episodes
sampled uniformly from a replay memory, thus
smoothing the data distribution and removing cor-
relations in the sequence of observations.

Use of a separate network for generating the
targets in the Q-learning update coupled with only
periodical updates of the action-value targets is
another trick that can be helful in alleviating the



issue, as most recently proposed in [6]. More pre-
cisely, every z number of updates the network ()
is cloned to obtain a target network )’, which is
then used for generating max, Qi(s’, a’) targets
for the updates to Q.

More formally, the DOQN is trained with the fol-
lowing loss:

L(6;) = E[(r+~ max Q*(s',d,0_)—Q(s,a,6;))?]

where the expectation is taken over (s, a,s’,r) -
experiences sampled uniformly from the replay
memory. 6; in the above equation are the param-
eters of the network at iteration i and 6_; are the
parameters used to compute the target at iteration
1.

The training is performed with epsilon-greedy
exploration (the agent chooses the best action
with probability epsilon and chooses a random ac-
tion otherwise) and no regularization is used. In
particular, dropout is usually advised against in
such regression settings.

3. Implementation
3.1. Technical setup

The game we play is Breakout. Our main
code builds on the freely distributed imple-
mentation from Nathan Sprague https:
//github.com/spragunr/deep_qg_rl
based on Theano + PyLearn2. The code utilizes
the RL-Glue framework to interact with the Atari
emulator, and concurrently trains a conv-net
using experience replaty tuples.

In training the net we use the Arcade Learn-
ing Environment game simulator for Atari, from
which we generate experience tuples (starting im-
age, action, reward, resulting image) [1]. At each
time step an action generated by the conv net is
passed to the emulator, which itself yields a new
reward and resulting image. The idea of periodic
updates from [6]] is not implemented in this code.

While we utilize the code engine provided by
Nathan, we needed to make a significant number

Table 1: Nathan Sprague’s network architecture

Layer Size of activation volume
Input 84 * 84 * 4
Conv8-16 20 *20 * 16
Conv4-32 9#*9*32
FC-256 256

FC-4 4

of adjustments to various elements of the package
to make it run on our machine - from editing the
code that allows interaction between Theano, RL-
Glue and Atari Emulator to dealing with various
numerical problems within Theano code, forcing
us to adjust portions of it.

We also had trouble unpickling the parameters
of the network trained on Theano and thus took
advandtage of the very recently released code
from Google DeepMind https://sites.
google.com/a/deepmind.com/dgn/.
We train a separate network and apply visualiza-
tion techniques.

3.2. Preprocessing and model architecture

Note that a single frame cannot capture the en-
tire state of the game: in general 2 and 3 frames
are required to respectively capture speed and ac-
celeration. In our case, the input to the network
consists 4 frames preprocessed in luminance scale
(see [6]). Action space consisted of 4 actions:
right, left and 2 nil actions.

The network construction involved no padding
and square filters. The output screen of the game
is cropped to 84x84 matrix (bottom part of the
screen).

E-greedy exploration is turned on during train-
ing and turned off during testing.

The difference between the 2 code implementa-
tions have different structures. These are outlined
in Tables 1 and 2. Table 3 shows (some) of the hy-
perparameters used in both implementations (see
[6] for a complete list of hyperparameters).


https://github.com/spragunr/deep_q_rl
https://github.com/spragunr/deep_q_rl
https://sites.google.com/a/deepmind.com/dqn/
https://sites.google.com/a/deepmind.com/dqn/

Table 2: Google DeepMind’s network architec-

ture
Layer Size of activation volume
Input 84 * 84 * 4
Conv8§-32 20 *20 * 32
Conv4-64 9*9*64
Conv3-64 7*7*64
FC-512 512
FC-4 4

Table 3: Training parameters by implementation

Nathan S. DeepMind

Learning rate 0.0002 0.00025
Replay memory 1 mln. 1 mln.
Discount factor 0.95 0.99
History lengths 4 4
Min epsilon 0.1 0.1
Start epsilon 1 1
Epsilon decay 10 min. 10 min.
Minibatch size 32 32

4. Experiments

4.1. Training results

Building on Nathan Sprague’s implementation,
we ran the code for Breakout game for 3 days
on NVIDIA GeForce GT 650M GPU and ob-
tained data for 50 training epochs (2.5 million it-
erations). The DQN figured out how to play at
a child-level, understanding it is controlling the
paddle and that it shouldn’t let the ball reach the
bottom of the screen. See figures 1,2 and 3 and
submitted video.

We note that this implementation fails to learn
the optimal strategy of tunneling, as covered in
[6], supposedly because of fewer iterations and a
difference in architecture. As stated earlier, we
also do not implement the trick from DeepMind’s
paper to facilitate convergence in Nathan’s code.
(We do observe tunneling in several instances, but
it is more of a random occurrence than a result of
careful planning). Still, the results prove that the

=
L=
(= =1

[=]
S oBEZE

r
04s| e N

040 jo r Pl
=

Average Action Value ayerage Reward per Epoch

0 1I0 2I0 EIIU 4:\'3 50
Taining Epochs

Figure 1: Training history - Nathan Sprague’s

implementation

learning procedure works.

However, we had difficulties extracting param-
eters from the files produced by Theano code.
Concurrently, we asked several members of the
Deep Q-Learning community to share some of
their trained networks - so that we could have a
larger sample to work on when examining how
the network works. While we received a lot of
feedback, we kept running into the same problems
when unpickling the network.

Thus, we decided to repeat the training with
Google’s code, the output of which we could ac-
tually process.

We ran Google’s Torch code for 3 days on AWS
EC2 GPU-enabled instance for 15 million itera-
tions (the code is unsurprisingly much better opti-
mized and thus faster than Nathan’s version). The
trained DQN achieves comparable performance
to that of Nathan’s implementation.

4.2. Visualization

We now unpack our trained network (Deep-
Mind implementation) and study its properties.
A common visualization technique for convolu-
tional networks [9] is to plot the weight of each
filter in the first convolutional layers expecting to
recognize the low level features that each filter is
trained to extract.

Our setting is different given that the depth of



Figure 2: Epoch 1 (50,000 iterations) - Nathan Sprague’s implementation

ooo = = ooBa -

Figure 3: Epoch 37 (1,850,000 iterations) - Nathan Sprague’s implementation

Figure 4: 4 frames of a sample state

our input shape corresponds to the time dimen-
sion rather than RGB channels. We thus display
each depth slice of our filters on a separate plot,
the intuition being that the sequence of 4 images
represents a template for the sequence of images
(i.e. the current state).

No apparent patterns were found when observ-
ing the weights of any of the first convolutional
layer’s filters (see Figure 5 for a sample filter).
This suggests that the DQN is strongly overfitting
the task of playing Breakout (the training does not
involve any regularization), thus not necessarily
focusing on features usually met in computer vi-
sion (such as edges and texture for example).

Figure 6 shows the activation maps of the
three convolutional layers for the sample state dis-
played in Figure 4. Note that some activations
are blank, possibly summarizing that all bricks are
present in our sample state. Simply looking at a
few sample states and their corresponding activa-
tion maps did not provide us with a clear under-
standing of what each filter is picking up in the
network.

We also looked at the states yielding the max-
imum action values (those were the states corre-
sponding to new screens - the network has learned
that a new screen leads to higher action values),

- = =}
Rl T

Figure 5: Weights of a sample filter from the first
layer (4 images to the 4 frames in the sequence)

the minimum action values and the extreme dif-
ferences in values between different values. No
notable results were found in the 2 latter experi-
ments.

5. Future Research

Although deep Q-learning has proven to be
an incredibly powerful method for learning opti-
mal action policies over arbitrarily complex state
spaces, its potential remained far from being ex-
plored.



1st convolutional layer

ddIJRMEE

2nd convolutional layer

ANEERIINE
HINENINE

2rd convolutional layer

IS AIEENnWN

NN AN
HANIEREED
JdHENEREED

Figure 6: Activations maps of our sample state

Additional insights and possibly a validation of
the overfitting hypothethis may be given by apply-
ing deconvnet [9] to get the top patches of each fil-
ter (note that it would require to adapt the method
to the time dimension).

Fighting overfitting and coming with regular-
ization techniques adapted to sequential problems
while getting reliable convergence seems to be a
challenging and promising future area of research
(e.g: penalizing useless actions, applying batch
normalization, training a network to play differ-
ent games).

On a more general level, great opportunity lies
in advancing our understanding of how neural
nets could handle large action spaces. While
existing implementations can handle limited dis-
crete action spaces with relative ease, continuous
action spaces of multiple variables or very large
discrete action spaces are still not well supported.

Finally, transfer learning in deep Q-learning
seems to hold great potential and may be one path
to a truly general autonomous game playing ma-
chine.

6. Conclusion

We are able to replicate the recently reported
success of deep Q-Learning for game control
from high-dimensional visual inputs. The method
allows us to achieve human-level performance on
Atari game “Breakout”, building on 2 different
code implementations - by Nathan Sprague and
Google DeepMind. We also provide analysis on
the features a trained DQN pays attention to, argu-
ing that the DOQN is largely overfitting its current
task. Finally we briefly discuss some potential di-
rections for future research in the field.



References

[1]

M. G. Bellemare, Y. Naddaf, J. Veness, and
M. Bowling. The arcade learning environment:
An evaluation platform for general agents. Jour-
nal of Artificial Intelligence Research, 47:253—
279, 06 2013.

I. J. Goodfellow, M. Mirza, D. Xiao, A. Courville,
and Y. Bengio. An empirical investigation of
catastrophic forgeting in gradient-based neural
networks. arXiv preprint arXiv:1312.6211, 2013.

M. Kochenderfer. Decision making under uncer-
tainty: Theory and applications. MIT press, 2015.

S. Lange and M. Riedmiller. Deep auto-encoder
neural networks in reinforcement learning. Pro-
ceedings of the International Joint Conference on
Neural Networks, 2010.

V. Mnih, K. Kavukcuoglu, D. Silver, A. Graves,
I. Antonoglou, D. Wierstra, and M. Riedmiller.
Playing Atari with Deep Reinforcement Learning.
arXiv preprint arXiv: ..., pages 1-9, 2013.

V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu,
J. Veness, M. G. Bellemare, A. Graves, M. Ried-
miller, A. K. Fidjeland, G. Ostrovski, S. Petersen,
C. Beattie, A. Sadik, I. Antonoglou, H. King,
D. Kumaran, D. Wierstra, S. Legg, and D. Hass-
abis. Human-level control through deep reinforce-
ment learning. Nature, 518(7540):529-533, 02
2015.

J. N. Tsitsiklis and B. Van Roy. An analysis
of temporal-difference learning with function ap-

proximation. Automatic Control, IEEE Transac-
tions on, 42(5):674-690, 1997.

M. Wiering and M. van Otterlo. Reinforcement
Learning, volume 12 of Adaptation, Learning,
and Optimization. Springer Berlin Heidelberg,
Berlin, Heidelberg, 2012.

M. D. Zeiler and R. Fergus. Visualizing and
Understanding Convolutional Networks. arXiv
preprint arXiv:1311.2901, 2013.



