
Rubiks Cube Localization, Face Detection, and Interactive Solving

Jay Hack
Stanford University

Stanford, CA
jhack@stanford.edu

Kevin Shutzberg
Stanford University

Stanford, CA
jkevin@stanford.edu

Abstract

While Rubiks cubes are highly mathematical puzzles
with a vast assortment of existing software, the task of trans-
ferring the cubes state into the computer has historically
been quite tedious. Here we approach this problem from a
computer vision perspective: how might one go about au-
tomatically recognizing and extracting the state of a Ru-
biks cube at any given point in time using a front-facing
web camera on commercial hardware, robust to a variety
of lighting conditions, scales and motion? We reason that
since the cubes face is highly structured and presents a dis-
tinct pattern and texture, this problem is an excellent can-
didate for convolutional neural networks. We present an
approach that relies upon two separately trained convolu-
tional neural networks for (1) localization of the cube within
live video feeds and (2) subsequent detection of the cen-
ters of the cube faces from cropped images. In addition,
we present a set of techniques grounded in classical com-
puter vision to extract the Rubiks cube state from the output
of the aforementioned convolutional neural networks, fea-
turing SLIC superpixel segmentation, projective transforms
and color histogram classification. Finally, we present a
technique for gathering large amounts of labeled data for
similar problems relying upon an iterative training then as-
sisted labeling procedure and analyze the resultant perfor-
mance gains. Our code is open source and can be viewed
at https://github.com/jayhack/ConvCube

1. Introduction

Rubiks cubes have recently emerged as a common task
for computer vision researchers to attempt to solve, perhaps
due to their neat, structured geometric properties, phyis-
cal distinctiveness/salience and the practical implications of
high-performing solutions. They offer distilled, constrained
and easier versions of many hard problems in computer vi-
sion, such as localization/detection, geometric reconstruc-
tion and pattern recognition.

For one, Rubiks cubes have an internal mathematical
structure that has been well-studied and is thoroughly un-
derstood by the mathematics community. We know, for in-
stance, an upper bound on the maximum number of turns
required to move from any given configuration to another
- known as Gods number, [5] it was recently proven using
a cluster of computers donated by Google that it takes no
more than 20 twists of the cube to get from any given con-
figuration to another. [1] There are simple and determinis-
tic algorithms for traversing the from one configuration to
another, many of which are available as well-documented
open source software. Their geometric properties make
them particularly enticing for computer vision researchers.
For one they have a highly distinctive texture, which lends
itself well to detection: due to the number of intersections
of contrasting colors on the faces of the cube, there is a high
probability of finding interesting points to track and distinc-
tive points of high gradient in the x and y directions in image
space.

In this paper, we present an approach to extracting a Ru-
biks cubes configuration that relies heavily on recent ad-
vances in convolutional neural networks. Loosely stated,
we extract a Rubiks cubes configuration in the following
steps:

1. Apply a convolutional neural network to raw images
from a webcam feed in order to infer (1) the most likely
x,y coordinates of the cube in the image, if it exists,
and (2) a scale factor describing how large the cube
appears in the image

2. Crop a region from the original, raw image that en-
closes the point and surrounding region containing
the cube inferred by the convolutional neural network
mentioned above

3. Apply a second, independently-trained set of three
neural networks to infer the most likely locations for
the centers of the three faces being presented. This
takes advantage of the fact that, since the white and

1

https://github.com/jayhack/ConvCube


yellow sides of the cube are always opposite of each
other, the camera will see at most one of them, and
therefore a single classifier trained to detect either a
yellow center piece or a white one will never have
to choose between equally qualified candidates. The
same is true of blue/green and orange/red.

4. Apply further preprocessing steps to the extracted re-
gion, including Gaussian smoothing and Kmeans

5. Extract superpixels from the image using the SLIC
superpixel algorithm [1]; gather features on each of
these, then classify each in order to locate candidates
for rubiks cube pieces

6. Take the centroids of the detected superpixels cor-
responding to Rubiks cube pieces, orient them
around the detected centers described in (3), and run
RANSAC in order to find the most likely projective
transform describing the relationship between the cube
face as seen in the image and the cube face in a flat
plain facing the user

7. Apply the most likely projective transform, found in
(6), then apply a supervised machine learning algo-
rithm to extract colors from the resultant structured im-
age.

8. Use the results of this algorithm, applied to images in
the real world, to gather more data (of potentially lower
quality than hand-labeled data) to retrain the numerous
machine learning algorithms mentioned above; repeat.

2. Background / Related Work
While there is a general interest in this problem in the

computer vision community, it is less of a formal academic
pursuit and more of an applications-oriented, project-based
engagement from the community. While we have encoun-
tered several projects that attempt to perform the same task
as we have outlined above, to our knowledge, none of them
have either attempted to (1) perform it at the variety of
scales that we have gathered data for, or (2) used convo-
lutional neural networks in order to perform this task. We
give a brief review of the projects below:

In [4], Kasprzak et al. formulate a computer vision
pipeline for extracting a structure representation of a Ru-
biks cube from images with an eye towards applications in
robotics. They describe a process that is capable of ex-
tracting a structured representation in real time from sin-
gle, isolated images. Their approach draws heavily upon
colorspace manipulations such as thresholding pixels in
YUV space based on hand-picked thresholds in order to lo-
cate cube pieces and determine their colors. Notably, they

constrain the problem to a single lighting condition and
background, which is perhaps appropriate for constrained
robotics applications. While they fail to report figures de-
scribing their accuracy, they report that their algorithm runs
in 90ms on a full-size image on modern computer hardware.

While there is a lack of academic documentation on it,
there are a number of available videos on YouTube and oth-
erwise that show individuals demonstrating their own sys-
tems. These seem to rely on three particular techniques:
edge detection, hough transforms and superpixel detection.
The hough line transform is a technique whereby points in
image space are transformed into sets in a hough space,
where any given point in the hough space corresponds to
a line in image space. Lines in the original image that
have several salient points on them (such as edge pixels)
will then have corresponding peaks in their corresponding
hough space. [3] This is used in common practice in a va-
riety of areas and is particularly applicable in this domain
as a Rubiks cube is guaranteed to have several detectable
lines with known relative orientations. A second commonly
used technique involves image segmentation and classifica-
tion of image segments. One particularly high-performing
and applicable image segmentation technique is the SLIC
superpixel algorithm, which decomposes an image into a set
of roughly rectangular superpixels that are maximally inter-
nally consistent in terms of pixel color. [4] This is highly
efficient and, along with the hough line transform, is im-
plemented in a number of open source computer vision li-
braries, including scikit-image and OpenCV.

3. Approach
Here we describe our approach, algorithms, methodol-

ogy and dataset used for this project.

3.1. Cube Localization via Convolutional Neural
Networks

The first, and perhaps most novel step in our algorithm is
the application of a convolutional neural network to extract
an image region that tightly encapsulates any Rubiks cube
present in the image. This is key to our approach as (1)
it allows us to ignore noisy and unpredictable background
image content in later steps, which are potentially sensitive
to noise, and (2) it is a relatively mild up-front investment
of CPU time that radically reduces the amount of processing
power required to compute subsequent results.

We trained a six-layer convolutional neural network to
regress from raw input images to a set of four real num-
bers approximating the (x,y) coordinates of the center of
any cube present, as well as x and y scale factors describ-
ing how large the smallest possible bounding box entirely

2



enclosing the cube is. Our final, highest-performing archi-
tecture was as follows:

Layer 1 Layer 2 Layer 3
Conv-Relu-Pool Conv-Relu-Pool Conv-Relu-Pool
16 3x3 filters; Max
pooling; Pool stride
of 2, kernel of 2.

16 3x3 filters; Max
pooling; Pool stride
of 2, kernel of 2.

32 3x3 filters; Max
pooling; Pool stride
of 2, kernel of 2.

Layer 4 Layer 5 Layer 6
Conv-Relu-Pool Affine-Relu Affine
32 3x3 filters; Max
pooling; Pool stride
of 2, kernel of 2.

64 neurons 4 neurons

Our raw input data consists of 640x360 RGB images
captured from a Macbook Pros web camera in a variety
of lighting conditions across the Stanford campus, includ-
ing indoors, outdoors, dimly-lit rooms, night time and in
direct sunlight. We downsampled the images to 100x100
pixels for this step in order to both boost accuracy (we em-
pirically determined that, at least for the architecture de-
scribed above, downsampled resolution improved accuracy)
and significantly cut down on the computational cost We
initially trained our net against hand-labelled ground-truth
bounding boxes from the gathered images using a euclidean
loss function at the final layer. This step is generally very
high-performing and works much faster than real time in a
variety of lighting conditions. See 3.I for a discussion of
our empirical results.

3.2. Finding Cube Pieces via SLIC Superpixel Clas-
sification

Since the Rubiks Cube (at least the standard one) is guar-
anteed to have each piece of uniform color, and uniform
size and shape, we reasoned that a reasonable way to go
about detecting these entities within an image was through
(1) segmenting the image into roughly rectangular superpix-
els using the SLIC superpixel segmentation algorithm, then
(2) classifying these superpixels based on internal color his-
tograms and shape descriptors. Concretely, our detection
pipeline was as follows:

1. Given an image, run MiniBatch Kmeans on pixel val-
ues and assign each pixel to its corresponding centroid
to encourage clustering of similar pixels. (This helps
with superpixel segmentation)

2. Run SLIC superpixel segmentation on the resulting
Kmeans image, producing a set of candidate superpix-
els for cube pieces

3. For each candidate superpixel, we collect a histogram
of HSV pixel values within and calculate up to the third

moment of the covered area, appending all into a fea-
ture vector

4. Based on a random forest classifier trained on hand-
labelled ground-truth data, we then classify all result-
ing superpixels as cube piece or otherwise.

Original Cropped Image Kmeans/SLIC Superpixels

Classified Superpixels Candidate Piece Centers

3.3. Pinpointing Centers of Cube Faces

As the images above demonstrate, we achieved reliable
performance in identifying locations of candidates for cube
pieces; this does not by itself, however, constitute a full re-
construction of the Rubiks cube. In order to understand the
cubes structure, one must find point-wise correspondences
between locations in the image and pieces of a Rubiks cube.
Our solution consisted of the following: employ a convo-
lutional neural network to identify the locations of center
pieces of each visible face, then assign the surrounding can-
didate cube piece centers their cube coordinates based on
their relative position to the identified face centers. We
trained a six layer network with the exact same architec-
ture as the network described in 3.I, the only change being
a final layer that regressed to two coordinates. We trained
three of these networks, one each to predict the centers of
yellow/white faces, blue/green faces and orange/red faces.
This takes advantage of the fact that, since yellow/white are
always on opposite sides of the cube, they will never been
seen together in the same image and therefore do not require
separate entities.

3



3.4. Bootstrap Learning for Data Acquisition

Since the algorithm outlined above runs in real time and
the machine learning portions were clearly benefiting from
any additional data that we could offer it, we reasoned that
using the output of the various classifiers on real, novel data
as additional training data for future iterations would vastly
improve performance. To that end, we created a module
that allows one to very quickly (1) record themselves with
the Rubiks cube in a given location, then (2) immediately
after step through the recorded footage and sanitize the out-
put of the classifiers, in order to discard inferences/labels
that are way off of the mark and keep our training data set
high-quality and precise. End-to-end, recording of a ten-
second-long video (roughly our average video length) and
hand-labelling it takes approximately 15 minutes and pro-
duces between 150 and 300 labelled data samples. (The ma-
jority of the time in hand-labelling images comes from pain-
stakingly drawing bounding boxes on each frame.) The
bootstrap learning process, in contrast, merely asks one to
confirm or reject labels that the algorithms themselves have
produced, which is near instantaneous for each frame - this
cuts down the time to label a ten second video to a matter
of two to three minutes.

3.5. Extracting Cube Face Information

Given our predictions for the centers of the cube faces
(and specifically, the corners of the center cube), we were
able to calculate a projective transform to orient the cube
and extract the color information from the faces. We were
then able to classify the colors of each square by using a
manually-tuned SVM.

4. Experiments/Results

4.1. Cube Localization via Convolutional Neural
Networks

To train the network described in 2.I for cube localiza-
tion, we gathered and hand-labelled 1,350 frames from 15
different videos with ground-truth bounding boxes tightly
bounding the cube. We intentionally gathered videos in a
wide variety of lighting conditions and background envi-
ronments, including several indoor and outdoor locations
around campus both in the afternoon and in the evening. In
addition, we intentionally gathered videos that frequently
show the cube in motion, partially occluded by the hand,
and at multiple scales, up to roughly five feet from the
camera lense. These videos were all shot with the front-
facing camera on a Macbook Pro at 640x360 resolution,
then down-sampled during training to 100x100 to both in-
crease accuracy and improve on the amount of time re-
quired. Furthermore, in order to increase the amount of
training data available, we flipped every frame around the

4



y axis and adjusted contrast with scalar constants randomly
sampled from the interval (0.6, 1). Our best training and
validation loss on this data set are summarized below. (Note
that coordinates and predictions were on a scale of 0 to 1,
so a validation loss of 0.5 indicates that we were routinely
halfway across the image from the true label.

Train Accuracy Validation Accuracy
Best 4-Layer Net 0.034 0.038
Best 5-Layer Net 0.035 0.032
Best 6-Layer Net 0.028 0.035

These results were attained with a data set of over 4,000
frames from 27 videos, over half of which had been at-
tributed labels in our bootstrap labelling process.

One of our most significant discoveries in the develop-
ment of this algorithm was that the forward pass for even the
6-layer net, implemented in Python with Cython extensions
(using code from CS 231N), took merely 7 milliseconds to
run. This is far faster than is necessary for real time, espe-
cially considering it was the most time-consuming portion
of our entire classification pipeline.

4.2. Finding Cube Pieces via SLIC Superpixel Clas-
sification

In this classification pipeline, the most costly step by far
was the assignment of pixels to their corresponding kmeans
centroids, which took an average of 5ms to perform using
MiniBatch Kmeans implemented by scikit-learn in python.
We trained a Random Forest classifier with 50 base esti-
mators on roughly 2,500 hand-labelled examples of super-
pixels, roughly 20% of which were positive examples. We
achieved an average of 92% classification accuracy at a
threshold of 20 trees voting positively during k-fold cross
validation with five folds.

5. Conclusion
Through the application of an assortment of convolu-

tional neural networks and other classical computer vision
methods, we have created an application that can track a Ru-
biks cube in real time across a video at a variety of scales
and lighting conditions. While our current implementation
does not support structured extraction of face information in
real time, we fully intend to continue developing this project
going forward and believe it is only a matter of implemen-
tation, as our algorithms are performing objectively well of-
fline, as can be seen above. To our knowledge, we are the
first to apply convolutional neural networks to the problem
of tracking Rubiks cubes in real time and extracting struc-
tured representations from them, and have round multiple
applications (localization, finding the centers of faces) in

which they perform objectively well. Noting that the num-
ber of potential applications for convolutional neural nets
is huge, we believe that other researchers investigating this
domain would benefit from experimenting with shifting as
many task as possible to convolutional neural networks as
possible, such as the segmentation and superpixel classifica-
tion phase (CNNs work extremely well for image segmen-
tation, as Lecun et al. have shown in [2]) and even perhaps
recognizing the roll, pitch and yaw of the cube directly. We
also believe that there is interesting work to be done in con-
structing a hough transform specifically for Rubiks cubes
- that is, one could map the centers of cube pieces to a
hough space representing all possible (x, y, z, roll, pitch,
yaw, scale) cubes within an image, then extract peaks from
this space. This is a more classical approach and would
seemingly require orders of magnitude less data in order to
become operational.

We would like to thank the CS231N Winter 2015 staff
for the CNN code that they developed for homework as-
signments, which we have also used in our project. We
have open sourced all of our code (still currently under
active development) on github and encourage the com-
puter vision community to contribute ideas and code. You
can access the code here: https://github.com/
jayhack/convcube. Finally, we are convinced that the
core models we have constructed have enormous potential
and are committed to continue amassing large amounts of
labelled data through the bootstrapping procedure we have
described above in order to further improve its performance.

References
[1] R. Achanta, A. Shaji, K. Smith, A. Lucchi, P. Fua, and

S. Ssstrunk. Slic superpixels. EPFL Technical Report no.
149300, June 2010. Available at http://ivrg.epfl.
ch/research/superpixels.

[2] J. Alvarez, T. Gevers, T. LeCun, and A. Lopez. Road scene
segmentation from a single image. http://yann.lecun.
com/exdb/publis/pdf/alvarez-eccv-12.pdf.

[3] J. Illingworth and J. Kittler. A survey of the
hough transform. Science Direct Volume 44, Is-
sue 1, October 1988, Pages 87116. Available at
http://www.sciencedirect.com/science/
article/pii/S0734189X88800331#.

[4] W. Kasprzak, W. Szynkiewicz, and L. Czajka. Ru-
biks cube reconstruction from single view for service
robots. http://www.ia.pw.edu.pl/˜wkasprza/
PAP/ICCVG06.pdf.

[5] T. Rokicki and H. Kociemba. God’s number is 20. http:
//www.cube20.org.

5

https://github.com/jayhack/convcube
https://github.com/jayhack/convcube
http://ivrg.epfl.ch/research/superpixels
http://ivrg.epfl.ch/research/superpixels
http://yann.lecun.com/exdb/publis/pdf/alvarez-eccv-12.pdf
http://yann.lecun.com/exdb/publis/pdf/alvarez-eccv-12.pdf
http://www.sciencedirect.com/science/article/pii/S0734189X88800331#
http://www.sciencedirect.com/science/article/pii/S0734189X88800331#
http://www.ia.pw.edu.pl/~wkasprza/PAP/ICCVG06.pdf
http://www.ia.pw.edu.pl/~wkasprza/PAP/ICCVG06.pdf
http://www.cube20.org
http://www.cube20.org

