
 

 

Abstract 
 

Recognizing arbitrary characters in unconstrained 
natural photographs is a hard problem. In this paper, we 
address an equally hard sub-problem in this domain - 
recognizing arbitrary single characters from Street View 
images. Similar problems, such as recognizing arbitrary 
multi-digits in street view images [Goodfellow, et al., 2013] 
and Recognizing Text in Google Street View Image 
[Lintern, et all., 2008], were well-investigated with decent 
solutions including localization, segmentation, image 
feature generation as well as applying machine learning 
models. In this paper, we propose a unified approach that 
integrates both localization and segmentation via the use 
of convolutional neural networks that operates directly on 
the image pixels. We have experimented with two main 
types of convolutional neural networks - a thin deep 
network like Google Network proposed in ILSVRC-2012 
competition and a flat shallow network like Alex Network 
proposed in ILSVRC-2012 competition. We find that the 
performance of neural network solution works much better 
than the traditional approach of classification based on 
image features, while the performance of this approach 
increases little with the depth of the convolutional network. 
We evaluate this approach on the publicly available 
Chars74K dataset and achieve over 84% accuracy in 
recognizing individual characters in the street view images. 
Our work could serve as the first step for recognizing a 
sequence of characters of the text in natural scenes. 
 

1. Introduction 
Recognizing characters in photographs captured at 

street level has significant impact on the quality of map 
resource utilization. For example, when a user enters a 
query into Google Maps, they are presented with a list 
of street level view for the address or target they have 
searched for. However, problems occur when a user 
searches for the street view image for a specific 
business or landmark, they prefer to see their object of 
interest centered in the Google Street View (GSV) 
viewport, instead of a list of un-oriented, un-organized 
street view images around the target or within an 
arbitrary distance from the target. In order to solve this 
problems, text recognition is the ideal solution as words 
recognized from the Google Maps search query can be 
identified in the nearby images so that the view can be 

centered upon an instance of text from the search query. 
Furthermore, the task of image text recognition is 
typically broken down into two distinct phases, - "text 
detection" and "word recognition." 

In this paper, we presents work towards automatic 
recognition of text in photographs captured at street 
view, where text recognition means to classify regions 
of the image which may contain text, without 
attempting to determine what the text says. In particular, 
we narrowed the problem as the recognition of 
individual characters in such photographs. Previously, 
optical character recognition (OCR) community spent 
great effort in recognizing characters in photographs. 
OCR on constrained domains like document processing 
is well studied, but arbitrary multi-character text 
recognition in photographs is still highly challenging. 
This is because OCR is only a very small subset of the 
problem in arbitrary multi-character text recognition in 
photographs with strong constraints enforced to relax 
the problem. In fact, OCR techniques cannot be applied 
out of the box precisely due to the wide variability of 
the text in real world. Figures 1 and 2 are sample 
images from such scenes, which demonstrate the 
challenge of this problem [1, 2]. The main reason come 
from the variety of the data source, where variety 
studied by Teófilo’s [2] comes from (a) font style and 
thickness; (b) background as well as foreground color 
and texture; (c) camera position and geometric 
distortions; (d) illumination; (e) character arrangements; 
(f) image acquisition factors such as resolution, motion, 
and focus blurs; (g) lighting, shadows, specularities, and 
occlusions. All these factors combine to give this a real 
problem of object recognition rather than OCR, which 
is much more complicated and general, without any 
additional constraints enforced to relax the initial 
problem. 

 
 

Figure 1: These are sample street view images 
taken by Google. We found that, there are wide 
variability of the text in the image, on account of a 
large range of fonts, colors, styles, orientations, 
character arrangements, lighting, shadows, 
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specularities, and occlusions, and image 
acquisition factors such as resolution, motion, and 
focus blurs. 
 

 
 
Figure 2: These are examples of individual 
characters that appear in the text of street view 
photography. We found that there is high visual 
similarity between samples of different classes 
caused mainly by the lack of visual context. For 
example, character ‘O’ and ‘0’, ‘1’, ‘I’ and ‘l’ are 
extremely similar in the real world street view 
images. 

 
In our work, we used Support Vector Machine based on 

Histogram of Oriented Gradients (HOG) and HSV 
(hue-saturation-value) features from images to classify 
individual characters as a baseline for character 
recognition, while we further designed both shallow and 
deep convolutional neural networks (CNN) to improve the 
accuracy for classification. We reached similar best 
performance of the two types of CNN - over 91% in 
validation set. We have evaluated this approach on the 
publicly available dataset Chars74K dataset and achieve 
over 84% accuracy in recognizing single characters in the 
street view images. Our work could serve as the first step 
for recognizing a sequence of characters of the text in 
natural scenes. 
 

The rest of the paper is organized as follows: Section 2 
explores. Sections 3 list the problem definition and 
describe the processed data. Section 5 and 6 describes the 
methods and the experimental results. Discussion and 
future work are concluded in Section 6. 

 

2. Related Work 
The task of character recognition in natural scenes is 

related to problems considered in camera-based object 

classification and detection. Previously, most of the work 
in this field is based on locating and rectifying the text 
areas [6], followed by the application of OCR techniques 
[7]. However, such approaches have significant limitations 
- (a) it works well only in scenarios where OCR works 
well and it is almost impossible to address the cases where 
foreground/background color and texture varies; (b) 
rectification step assumes that the image is dominated by 
text since it is based on the detection of printed document 
edges. Thus, text recognition largely fails when faced with 
substantial variation in lighting, viewing angle, text 
orientation, size, lexicon, etc. 

Later, more approaches attempted to go outside of the 
limited scope of document OCR and deal with variations 
in foreground/background color and texture. Recognition 
pipelines based on classifying raw images have been 
widely explored for digits recognition [5] on the MNIST 
and USPS datasets. The main idea is to treat each type of 
digit as a category and build a model that classify each 
digit in the image as accurate as possible. There are two 
state-of-arts approaches in this solution. The first approach 
is to generate features from the image that contains the 
digits or characters and then apply machine learning 
models to predict the probability of each class given the 
input images. If the image consists more than characters, 
probabilistic graphical models are used to accommodate 
contextual relationships. For example, Teófiloet al., [2] 
assess the performance of various features based on 
nearest neighbour and SVM classification and indicated 
that the performance of the proposed method, using as few 
as 15 training images, can be far superior to that of 
commercial OCR systems. Furthermore, Linternet al., [4] 
uses a Support Vector Machine based on locally 
aggregated statistical features from natural scene 
photographies, reaching an accuracy around 40% in 
recognizing texts in google street view images. Another 
approach is to apply convolutional neural networks that 
operates directly on the image pixels. The earliest work in 
this approach is done by Matan, Ofer, et al [5], who 
proposed a feed-forward network architecture for 
recognizing an unconstrained handwritten multi-digit 
string. This earliest work reaches an accuracy less than 
70%, mainly due to the lack of enough data and 
computation resources. With the increase in the 
availability of computational resources and the size of 
available training sets, it is possible to train a much more 
complicated and deeper neural networks. Also, 
algorithmic advances such as dropout training [8] have led 
to many recent successes in image recognition using deep 
convolutional neural networks. For example, Krizhevsky 
et al. [9] made significant improvements in object 
recognition from a large scale of images - imageNet [10]. 
In 2013, Goodfellow et al.[3] applied a deep convolutional 
neural network to recognize arbitrary multi-character text 
in unconstrained natural photographs, and found that the 



 

 

performance increased with the depth of the convolutional 
network with over 96% accuracy in recognizing complete 
street numbers of SVHN dataset and 97.84% accuracy on 
a per-digit recognition task. Based on the related work, we 
narrowed our task to recognize single digits from street 
view images and experimented on both approaches 
(feature based approach and CNN based approach) 
discussed above. 

3. Problem Description & Data Processing 
In this work, we intend to develop a classifier that 
correctly classifies single characters from street view 
images into 62 categories – ‘0~9’, ‘a~z’, ‘A~Z’. 

3.1.  Problem Description 

We frame this task as a classification problem where 
the eventual goal is to map the single characters to the 
correct type of the class. First, we label 62 categories of 
characters – ‘0~9’, ‘a~z’, ‘A~Z’ as numerical number 
0~61 in the same order. For example, label 0 is mapped 
to character ‘0’, label 10 is mapped to character ‘a’, and 
label 61 is mapped to character ‘Z’. Then, the problem 
is, given an input image containing a single character, to 
find a model that could predict the probability/score of 
each class and the class with highest probability/score is 
the correct class for that character. 

3.2. Data Processing 

We used dataset from the public available Chars74K 
dataset [11], which includes 74k street view images 
containing both English and Kannada. In our task, we 
only considered recognition of English character and 
hence reduced to the initial 74k images into 63k images, 
covering 64 classes of letters (0-9, A-Z, a-z). From 
those images, we collected 7705 characters obtained 
from natural images, 3410 hand drawn characters using 
a tablet PC, and 62992 synthesized characters from 
computer fonts. In figure 3, a subset of samples for 
single characters are shown with various backgrounds 
in street view images. 
 

 
 

Figure 3: Sample single characters with various 
backgrounds in Chars74K. 

  

We pre-processed image data from Chars74K dataset 
contains 63k images covering 62 different classes of 
English characters. In order to reduce the I/O cost, we 
pre-processed each image data and corresponding label, 
and cached them into a binary format that is readable in 
Caffe pipeline. We also built a dictionary that maps the 
62 classes into numerical labels. Furthermore, since 
images are of different sizes, we resized the all images 
into 64x64 pixels with R/G/B 3 channels. In summary, 
we eventually collected 63k images with 64x64x3 
dimensions with numerical labels from 0 to 61. 

3.3. Data Split 

As listed in the Table1, we split the 63k images into 
three subsets for training, validation and testing. 

 
  Table 1: split data for training, validation, and testing. 
 

3.4. Expected Results 

We expect to build a classifier that predicts an unknown 
image (containing a single character) with 
probability/score values for each numerical label. The 
expected model could be SVM, Soft-Max, and 
Convolutional Neural Networks (CNN). 

3.5. Evaluation 

We will use 11k withheld images in the test set to 
evaluate our method. The 11k test images were 
pre-processed in the same way as those 40k training 
images and 12k validation images - each were rescaled 
into size 64x64x3 and a class label. We won’t touch this 
test data unless the classifiers were developed. We will 
apply the trained classifiers on those 11K withheld 
images and compare the predicted class label with the 
true class label. Finally, we mapped the predicted class 
label to the class name so that our pipeline could serve 
an application to recognize real-world characters. 
 

 Data Split  

TRAINING VLIDATION TESTING 

40k 12k 11k 



 

 

4. Technical Approach 

4.1. SVM 

Our baseline approach is to utilize histogram of oriented 
gradients (HoG) and color histogram based features on 
Support vector machine(SVM). Specifically, for each 
image, our model computes HoG feature as well as a color 
histogram using the hue channel in HSV color space and 
combine them together as a vector for each image.  

4.2. Convolutional neural networks 

4.2.1 Shallow, Flat CNN 

We trained two convolutional neural networks: First 
model has a similar architecture as the Alex’s model[12], 
which has proved to be highly effective in general image 
classification tasks. Our modified models have the 
architecture shown in Table 2. All of the modified models 
have same architecture with only various numbers of 
filters.  
 

Table 2: Simple CNN models with similar architecture but 
different convolution parameters 

4.2.2 Deep, Thin CNN  

Intuitively, the most straightforward and effective way to 
enhance CNN accuracy is to train deep and complicated 
models, and we have trained a modified model based on 
GoogleNet [13], which is shown in figure 4. Our model 

has different   

11111111  
Figure 4: GoogleNet architecture 

ConvNet Configuration 
A B C 

Input 64x64 RGB image 
Conv3-128 

RELU 
Conv3-256 

RELU 
Conv3-256 

RELU 
Maxpool 2x2 

Conv5-256 
RELU 

Conv3-256 
RELU 

Conv3-256 
RELU 

Maxpool 2x2 
Conv3-512 

RELU 
Conv3-256 

RELU 
Conv3-512 

RELU 
Conv3-512 

RELU 
Conv3-256 

RELU 
Conv3-512 

RELU 
Conv3-256 

RELU 
Conv3-256 

RELU 
Conv3-256 

RELU 
Maxpool 2x2 

FC-4096 
FC-4096 

Relu 
Dropout 
FC-62 

SoftMax 



 

 

 
convolution parameters like filter size, filter number, 
padding and stride to meet our input data size 64 x 64. 
Also, size 2 max pooling would be good enough since the 
input image size is not very large and our model could 
handle it. Additionally, a 62 classes Fully connected layer 
is used at the end of the architecture instead of a 1000 
classes Fully connected layer in the original Google Net as 
our task is to predict 10 digit and 26 lowercase letters with 
26 uppercase letters. The architecture of the original 
GoogleNet is shown in Figure 4. 

5. Experiment and Results 
We utilize Top1 and Top5 evaluation method. As 
expected, CNN models perform much better than the 
baseline SVM model.  However, it is very interesting that 
all the three AlexNet have very similar result and more 
astonishingly that the really complicated GoogleNet model 
could not outperform the AlexNet models. All the result 
are shown in Table 2. 
 

 Training Validation Test 

SVM with 
HOG/HSV 88.64% 79.82% 70.01% 

(Top1) 

AlexNet 98.39% 91.22% 84.98% 
(Top1) 

GoogleNet 100% 92.37% 

84.46% 
(Top1) 
97.28% 
(Top5) 

 
Table 3: Evaluation result for all the models 

6. Discussion and Future Work 

6.1. Discussion  
In this paper, we have utilized multiple different models to 
approach the problem of identify character from images. 
As the problem is greatly simplified with the help of 
localization, even the basic HoG/HSV based SVM would 
be able to reach a decent accuracy. Furthermore, we 
demonstrate that convolutional neural network is very 
efficient in image recognition. CNN combines the model 
selection with feature selection together so that more data 
specific features would not be missed and over-fitting 
could be prevented by utilizing dropout. Interestingly, the 
much more complex googleNet-like CNN model has 
performed similarly for this tasks. Such similar result 
could be resulting from the simplicity of the task. The 
letters and the digits have relatively simple structure and 
the information provided would not as more rich as more 

complicated other language characters, such as Chinese 
and Arabian characters. As a result, all the useful patterns 
are well extracted from the simple architecture and deeper 
network would not able to take out new information.  
 
The reasons that our models were unable to reach higher 
accuracy are twofold. The first reason is that the task is to 
recognize single character from the image so that there is 
no context information about the letter or digit as in 
traditional text recognition. Such context information 
would benefit a lot on the identification between 
characters but we would not expect it provide very 
meaningful context for the digits. The second reason came 
from the similarity of the certain letters and digit. For 
example, digit “zero”, letter “o” and uppercase letter “D”; 
lowercase letter “L”, uppercase letter “i” and digit “1” as 
shown in figure 5, are originally very similar. With 
deviation coming from various font and hand written habit, 
identify character between some of them could be 
extremely difficult. 

 
Figure 5: letter I, L and digit 1 in the first row; digit zero, 
letter o and letter d in the second row have very similar 

patterns. 

6.2.  Future Work 
Although complicated CNN would unable to outperform 
simple CNN models, we would expect different models 
would still have different confidence on predicting 
different image characters. In order to combine the 
distinction of different model confidence, training with 
more CNN models and ensemble their prediction 
probability would help. 
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