

Abstract

Recognizing arbitrary characters in unconstrained
natural photographs is a hard problem. In this paper, we
address an equally hard sub-problem in this domain -
recognizing arbitrary single characters from Street View
images. Similar problems, such as recognizing arbitrary
multi-digits in street view images [Goodfellow, et al., 2013]
and Recognizing Text in Google Street View Image
[Lintern, et all., 2008], were well-investigated with decent
solutions including localization, segmentation, image
feature generation as well as applying machine learning
models. In this paper, we propose a unified approach that
integrates both localization and segmentation via the use
of convolutional neural networks that operates directly on
the image pixels. We have experimented with two main
types of convolutional neural networks - a thin deep
network like Google Network proposed in ILSVRC-2012
competition and a flat shallow network like Alex Network
proposed in ILSVRC-2012 competition. We find that the
performance of neural network solution works much better
than the traditional approach of classification based on
image features, while the performance of this approach
increases little with the depth of the convolutional network.
We evaluate this approach on the publicly available
Chars74K dataset and achieve over 84% accuracy in
recognizing individual characters in the street view images.
Our work could serve as the first step for recognizing a
sequence of characters of the text in natural scenes.

1. Introduction
Recognizing characters in photographs captured at

street level has significant impact on the quality of map
resource utilization. For example, when a user enters a
query into Google Maps, they are presented with a list
of street level view for the address or target they have
searched for. However, problems occur when a user
searches for the street view image for a specific
business or landmark, they prefer to see their object of
interest centered in the Google Street View (GSV)
viewport, instead of a list of un-oriented, un-organized
street view images around the target or within an
arbitrary distance from the target. In order to solve this
problems, text recognition is the ideal solution as words
recognized from the Google Maps search query can be
identified in the nearby images so that the view can be

centered upon an instance of text from the search query.
Furthermore, the task of image text recognition is
typically broken down into two distinct phases, - "text
detection" and "word recognition."

In this paper, we presents work towards automatic
recognition of text in photographs captured at street
view, where text recognition means to classify regions
of the image which may contain text, without
attempting to determine what the text says. In particular,
we narrowed the problem as the recognition of
individual characters in such photographs. Previously,
optical character recognition (OCR) community spent
great effort in recognizing characters in photographs.
OCR on constrained domains like document processing
is well studied, but arbitrary multi-character text
recognition in photographs is still highly challenging.
This is because OCR is only a very small subset of the
problem in arbitrary multi-character text recognition in
photographs with strong constraints enforced to relax
the problem. In fact, OCR techniques cannot be applied
out of the box precisely due to the wide variability of
the text in real world. Figures 1 and 2 are sample
images from such scenes, which demonstrate the
challenge of this problem [1, 2]. The main reason come
from the variety of the data source, where variety
studied by Teófilo’s [2] comes from (a) font style and
thickness; (b) background as well as foreground color
and texture; (c) camera position and geometric
distortions; (d) illumination; (e) character arrangements;
(f) image acquisition factors such as resolution, motion,
and focus blurs; (g) lighting, shadows, specularities, and
occlusions. All these factors combine to give this a real
problem of object recognition rather than OCR, which
is much more complicated and general, without any
additional constraints enforced to relax the initial
problem.

Figure 1: These are sample street view images
taken by Google. We found that, there are wide
variability of the text in the image, on account of a
large range of fonts, colors, styles, orientations,
character arrangements, lighting, shadows,

Recognizing Characters From Google Street View Images

Guan Wang, Jingrui Zhang

guanw@stanford.edu jingrui@stanford.edu

specularities, and occlusions, and image
acquisition factors such as resolution, motion, and
focus blurs.

Figure 2: These are examples of individual
characters that appear in the text of street view
photography. We found that there is high visual
similarity between samples of different classes
caused mainly by the lack of visual context. For
example, character ‘O’ and ‘0’, ‘1’, ‘I’ and ‘l’ are
extremely similar in the real world street view
images.

In our work, we used Support Vector Machine based on

Histogram of Oriented Gradients (HOG) and HSV
(hue-saturation-value) features from images to classify
individual characters as a baseline for character
recognition, while we further designed both shallow and
deep convolutional neural networks (CNN) to improve the
accuracy for classification. We reached similar best
performance of the two types of CNN - over 91% in
validation set. We have evaluated this approach on the
publicly available dataset Chars74K dataset and achieve
over 84% accuracy in recognizing single characters in the
street view images. Our work could serve as the first step
for recognizing a sequence of characters of the text in
natural scenes.

The rest of the paper is organized as follows: Section 2
explores. Sections 3 list the problem definition and
describe the processed data. Section 5 and 6 describes the
methods and the experimental results. Discussion and
future work are concluded in Section 6.

2. Related Work
The task of character recognition in natural scenes is

related to problems considered in camera-based object

classification and detection. Previously, most of the work
in this field is based on locating and rectifying the text
areas [6], followed by the application of OCR techniques
[7]. However, such approaches have significant limitations
- (a) it works well only in scenarios where OCR works
well and it is almost impossible to address the cases where
foreground/background color and texture varies; (b)
rectification step assumes that the image is dominated by
text since it is based on the detection of printed document
edges. Thus, text recognition largely fails when faced with
substantial variation in lighting, viewing angle, text
orientation, size, lexicon, etc.

Later, more approaches attempted to go outside of the
limited scope of document OCR and deal with variations
in foreground/background color and texture. Recognition
pipelines based on classifying raw images have been
widely explored for digits recognition [5] on the MNIST
and USPS datasets. The main idea is to treat each type of
digit as a category and build a model that classify each
digit in the image as accurate as possible. There are two
state-of-arts approaches in this solution. The first approach
is to generate features from the image that contains the
digits or characters and then apply machine learning
models to predict the probability of each class given the
input images. If the image consists more than characters,
probabilistic graphical models are used to accommodate
contextual relationships. For example, Teófiloet al., [2]
assess the performance of various features based on
nearest neighbour and SVM classification and indicated
that the performance of the proposed method, using as few
as 15 training images, can be far superior to that of
commercial OCR systems. Furthermore, Linternet al., [4]
uses a Support Vector Machine based on locally
aggregated statistical features from natural scene
photographies, reaching an accuracy around 40% in
recognizing texts in google street view images. Another
approach is to apply convolutional neural networks that
operates directly on the image pixels. The earliest work in
this approach is done by Matan, Ofer, et al [5], who
proposed a feed-forward network architecture for
recognizing an unconstrained handwritten multi-digit
string. This earliest work reaches an accuracy less than
70%, mainly due to the lack of enough data and
computation resources. With the increase in the
availability of computational resources and the size of
available training sets, it is possible to train a much more
complicated and deeper neural networks. Also,
algorithmic advances such as dropout training [8] have led
to many recent successes in image recognition using deep
convolutional neural networks. For example, Krizhevsky
et al. [9] made significant improvements in object
recognition from a large scale of images - imageNet [10].
In 2013, Goodfellow et al.[3] applied a deep convolutional
neural network to recognize arbitrary multi-character text
in unconstrained natural photographs, and found that the

performance increased with the depth of the convolutional
network with over 96% accuracy in recognizing complete
street numbers of SVHN dataset and 97.84% accuracy on
a per-digit recognition task. Based on the related work, we
narrowed our task to recognize single digits from street
view images and experimented on both approaches
(feature based approach and CNN based approach)
discussed above.

3. Problem Description & Data Processing
In this work, we intend to develop a classifier that
correctly classifies single characters from street view
images into 62 categories – ‘0~9’, ‘a~z’, ‘A~Z’.

3.1. Problem Description

We frame this task as a classification problem where
the eventual goal is to map the single characters to the
correct type of the class. First, we label 62 categories of
characters – ‘0~9’, ‘a~z’, ‘A~Z’ as numerical number
0~61 in the same order. For example, label 0 is mapped
to character ‘0’, label 10 is mapped to character ‘a’, and
label 61 is mapped to character ‘Z’. Then, the problem
is, given an input image containing a single character, to
find a model that could predict the probability/score of
each class and the class with highest probability/score is
the correct class for that character.

3.2. Data Processing

We used dataset from the public available Chars74K
dataset [11], which includes 74k street view images
containing both English and Kannada. In our task, we
only considered recognition of English character and
hence reduced to the initial 74k images into 63k images,
covering 64 classes of letters (0-9, A-Z, a-z). From
those images, we collected 7705 characters obtained
from natural images, 3410 hand drawn characters using
a tablet PC, and 62992 synthesized characters from
computer fonts. In figure 3, a subset of samples for
single characters are shown with various backgrounds
in street view images.

Figure 3: Sample single characters with various
backgrounds in Chars74K.

We pre-processed image data from Chars74K dataset
contains 63k images covering 62 different classes of
English characters. In order to reduce the I/O cost, we
pre-processed each image data and corresponding label,
and cached them into a binary format that is readable in
Caffe pipeline. We also built a dictionary that maps the
62 classes into numerical labels. Furthermore, since
images are of different sizes, we resized the all images
into 64x64 pixels with R/G/B 3 channels. In summary,
we eventually collected 63k images with 64x64x3
dimensions with numerical labels from 0 to 61.

3.3. Data Split

As listed in the Table1, we split the 63k images into
three subsets for training, validation and testing.

 Table 1: split data for training, validation, and testing.

3.4. Expected Results

We expect to build a classifier that predicts an unknown
image (containing a single character) with
probability/score values for each numerical label. The
expected model could be SVM, Soft-Max, and
Convolutional Neural Networks (CNN).

3.5. Evaluation

We will use 11k withheld images in the test set to
evaluate our method. The 11k test images were
pre-processed in the same way as those 40k training
images and 12k validation images - each were rescaled
into size 64x64x3 and a class label. We won’t touch this
test data unless the classifiers were developed. We will
apply the trained classifiers on those 11K withheld
images and compare the predicted class label with the
true class label. Finally, we mapped the predicted class
label to the class name so that our pipeline could serve
an application to recognize real-world characters.

 Data Split

TRAINING VLIDATION TESTING

40k 12k 11k

4. Technical Approach

4.1. SVM

Our baseline approach is to utilize histogram of oriented
gradients (HoG) and color histogram based features on
Support vector machine(SVM). Specifically, for each
image, our model computes HoG feature as well as a color
histogram using the hue channel in HSV color space and
combine them together as a vector for each image.

4.2. Convolutional neural networks

4.2.1 Shallow, Flat CNN

We trained two convolutional neural networks: First
model has a similar architecture as the Alex’s model[12],
which has proved to be highly effective in general image
classification tasks. Our modified models have the
architecture shown in Table 2. All of the modified models
have same architecture with only various numbers of
filters.

Table 2: Simple CNN models with similar architecture but
different convolution parameters

4.2.2 Deep, Thin CNN

Intuitively, the most straightforward and effective way to
enhance CNN accuracy is to train deep and complicated
models, and we have trained a modified model based on
GoogleNet [13], which is shown in figure 4. Our model

has different

11111111
Figure 4: GoogleNet architecture

ConvNet Configuration
A B C

Input 64x64 RGB image
Conv3-128

RELU
Conv3-256

RELU
Conv3-256

RELU
Maxpool 2x2

Conv5-256
RELU

Conv3-256
RELU

Conv3-256
RELU

Maxpool 2x2
Conv3-512

RELU
Conv3-256

RELU
Conv3-512

RELU
Conv3-512

RELU
Conv3-256

RELU
Conv3-512

RELU
Conv3-256

RELU
Conv3-256

RELU
Conv3-256

RELU
Maxpool 2x2

FC-4096
FC-4096

Relu
Dropout
FC-62

SoftMax

convolution parameters like filter size, filter number,
padding and stride to meet our input data size 64 x 64.
Also, size 2 max pooling would be good enough since the
input image size is not very large and our model could
handle it. Additionally, a 62 classes Fully connected layer
is used at the end of the architecture instead of a 1000
classes Fully connected layer in the original Google Net as
our task is to predict 10 digit and 26 lowercase letters with
26 uppercase letters. The architecture of the original
GoogleNet is shown in Figure 4.

5. Experiment and Results
We utilize Top1 and Top5 evaluation method. As
expected, CNN models perform much better than the
baseline SVM model. However, it is very interesting that
all the three AlexNet have very similar result and more
astonishingly that the really complicated GoogleNet model
could not outperform the AlexNet models. All the result
are shown in Table 2.

 Training Validation Test

SVM with
HOG/HSV 88.64% 79.82% 70.01%

(Top1)

AlexNet 98.39% 91.22% 84.98%
(Top1)

GoogleNet 100% 92.37%

84.46%
(Top1)
97.28%
(Top5)

Table 3: Evaluation result for all the models

6. Discussion and Future Work

6.1. Discussion
In this paper, we have utilized multiple different models to
approach the problem of identify character from images.
As the problem is greatly simplified with the help of
localization, even the basic HoG/HSV based SVM would
be able to reach a decent accuracy. Furthermore, we
demonstrate that convolutional neural network is very
efficient in image recognition. CNN combines the model
selection with feature selection together so that more data
specific features would not be missed and over-fitting
could be prevented by utilizing dropout. Interestingly, the
much more complex googleNet-like CNN model has
performed similarly for this tasks. Such similar result
could be resulting from the simplicity of the task. The
letters and the digits have relatively simple structure and
the information provided would not as more rich as more

complicated other language characters, such as Chinese
and Arabian characters. As a result, all the useful patterns
are well extracted from the simple architecture and deeper
network would not able to take out new information.

The reasons that our models were unable to reach higher
accuracy are twofold. The first reason is that the task is to
recognize single character from the image so that there is
no context information about the letter or digit as in
traditional text recognition. Such context information
would benefit a lot on the identification between
characters but we would not expect it provide very
meaningful context for the digits. The second reason came
from the similarity of the certain letters and digit. For
example, digit “zero”, letter “o” and uppercase letter “D”;
lowercase letter “L”, uppercase letter “i” and digit “1” as
shown in figure 5, are originally very similar. With
deviation coming from various font and hand written habit,
identify character between some of them could be
extremely difficult.

Figure 5: letter I, L and digit 1 in the first row; digit zero,
letter o and letter d in the second row have very similar

patterns.

6.2. Future Work
Although complicated CNN would unable to outperform
simple CNN models, we would expect different models
would still have different confidence on predicting
different image characters. In order to combine the
distinction of different model confidence, training with
more CNN models and ensemble their prediction
probability would help.

References
[1] The Street View Text Dataset,

http://vision.ucsd.edu/~kai/svt/
[2] Teófilo E. de Campos,. Xerox Research Centre Europe,.

CHARACTER RECOGNITION IN NATURAL IMAGES.
6 chemin de Maupertuis, 38240 Meylan, France.

[3] Goodfellow, I. J., Bulatov, Y., Ibarz, J., Arnoud, S., & Shet,
V. (2013). Multi-digit number recognition from street view
imagery using deep convolutional neural networks. arXiv
preprint arXiv:1312.6082.

[4] Lintern, James. "Recognizing Text in Google Street View
Images." Statistics 6 (2008).

[5] Matan, Ofer, et al. "Multi-digit recognition using a space
displacement neural network." (1995).

[6] Kumar, S., Gupta, R., Khanna, N., Chaudhury, S., and Joshi,
S. (2007). Text extraction and document image
segmentation using matched wavelets and mrf model. IEEE
Transactions on Image Processing, 16(8):2117– 2128

[7] Kise, K. and Doermann, D. S., editors (2007). Proceedings
of the Second International Workshop on Camera-based
Document Analysis and Recognition CBDAR, Curitiba,
Brazil. http://www.imlab.jp/cbdar2007/.

[8] Hinton, G. E., Srivastava, N., Krizhevsky, A., Sutskever, I.,
and Salakhutdinv, R. (2012). Improving neural networks by
preventing co-adaptation of feature detectors. Technical
report, arXiv:1207.0580.

[9] Krizhevsky, A., Sutskever, I., and Hinton, G. (2012).
ImageNet classification with deep convolutional neural
networks. In NIPS’2012.

[10] ImageNet, http://www.image-net.org/
[11] The Chars74K dataset,

www.ee.surrey.ac.uk/CVSSP/demos/chars74k/#download
[12] Alex Krizhevsky, Ilya Sutskever, Geoffrey E. Hinton.

ImageNet Classification with Deep Convolutional Neural
Networks. In NIPS’2012.

[13] Christian Szegedy, Wei Liu, Yangqing Jia, Pierre Sermanet,
Scott Reed, Dragomir Anguelov, Dumitru Erhan, Vincent
Vanhoucke, and Andrew Rabinovich. GOOGLENET:
GOING DEEPER WITH CONVOLUTIONS.
arXiv:1409.4842

