Google Street View Character Recognition

Jiyue Wang and Peng Hui How
Stanford University
450 Serra Mall, Stanford, CA 94305

{jiyue, phowl}@stanford.edu

Abstract

In this project, we intend to identify characters (0-9, a-
z, A-Z) from Google street view images. We aim to solve
this problem using convolutional neural network, in order
to testify how well deep learning can automatize the pro-
cess of background extraction, topology visualization, and
photometric normalization. We also intend to compare the
performance between neural networks of different architec-
tures, and justify the reason behind this.

1. Introduction

Extensive research has been dedicated to the effort of
street view character recognition. This is a general problem
that falls under the category of character classification with
natural scene background. It is a problem that plays an im-
portant role in our everyday life. The ability to recognize
street view character with varied backgrounds enables ma-
chines to automatically read off textual information such as
road signs in a real-time manner. Another related prevalent
usage would be the improvement in visual search engines
efficiencies.

As opposed to the well studied traditional optical char-
acter recognition with pure bitmap inputs, the input here
comprises characters with various fonts, colors and back-
grounds, which adds an entire scale of difficulty. The for-
mer was a simple problem, hence even classical machine
learning algorithms such as multiclass SVM was sufficient
to solve the problem satisfactorily (albeit not perfectly). To
solve character recognition in natural scene, due to the high
flexibility of input arises from situations such as multiple
fonts within a single class and background that obscures the
foreground edges, using classical machine learning tech-
niques would require way too much manual pre-processing
work. Hence we plan to employ convolutional neural net-
work (CNN), namely neural networks which parameters are
tied across multiple neurons, testified to be especially useful
in image recognition.

2. Related Work

Digit recognition was one of the earliest problem suc-
cessfully tackled by CNN. Back in 1998 when LeCun et.al.
first formalized the concept of CNN, the LeNet5 architec-
ture was used to solve handwritten digit recognition (pro-
cessed as bitmap) in the famous MNIST (Mixed National
Institute of Standards and Technology) database, achieving
an accuracy rate of 0.99.

On a similar note, Google managed to tackle a much
more challenging version of this problem [3]], transcribing a
sequence of street view house numbers under natural scene
and lightning under the SVHN (Street View House Num-
ber) dataset, with an unpreceeding overall sequence tran-
scription accuracy of 0.96 and character level accuracy of
0.98, employing a CNN with 11 layers, consisting of eight
convolutional hidden layers, one locally connected hidden
layer, and two densely connected hidden layers, without any
skipped connection. This architecture took approximately
six days on 10 replicas in DistBelief, an infrastructure that
uses 16000 CPU cores spread across 1000 machines. Re-
peating the same is beyond the reach for regular consump-
tion, in particular in the absence of such gigantic computa-
tional resources.

In our work, we explore CNNs with comparable per-
formance on a 62-class natural scene character recognition
problem using Caffe framework [4]. We experimented the
different effect of architectural choices including various
depth, dropouts, leaky ReLu, learning rates, and regular-
izations. To compensate for the small streetview character
dataset, we experimented on transfer learning on different
trained models. However, it turns out that training from
scratch on a three-layer CNN is even better than transfer
learning on some four-layer model. We also did data aug-
mentation to improve the test accuracy.

All our network trainings were done using the Caffe
framework.



3. Problem Statement

Our main data source is the Chars74K dataset [1]]. It
has 7705 characters from natural images which are further
classified into ‘good images’ and ‘bad images’ (the latter
are somtimes hardly distinguishable by human eyes), 3410
hand drawn characters using a tablet PC, and 62992 synthe-
sized characters from computer fonts.

Here are some example images in the dataset:

Figure 1. Streetview characters in chars74k

U a7

Figure 2. Synthesized fonts in chars74k

Our emphasis is on the natural images, thus we used syn-
thesized characters and hand drawn characters as pre-train
data. After examining the Google street view data, we de-
cided to pre-train CNN on the synthesized characters and
do transfer learning. We also tested transfer learning from
LeNet5 (trained on MNIST). At first we believed that the
topological structure was the most important factor to clas-
sify a number/character, hence we transformed the natural
images into grayscale before doing transfer learning from
LeNet5. Later, we tried to train CNN from scratch on raw
RGB data of natural images and obtained a slightly bet-
ter result. This might because some information were lost
when we transformed from RGB to grayscale.

We compared our results against traditional methods
such as SVM. Some archived results using traditional meth-
ods in this area include work from Microsoft research [2].
From the previous work, we know that the best accuracy is
0.55 (obtained by multiple kernel learning). We thus expect
higher accuracy for CNN.

In the next section, we would discuss about our vari-
ous experimental procedures, mainly in transfer learning,
RGB versus greyscale, adjusting learning rate and regular-
ization rate, changing number of outputs in various layers,
choice of nonlinear function (ReLU Versus Leaky ReLU),
and dropout rates (if using this option).

4. Experiment
4.1. Pre-Processing

This procedure consists of resizing followed by data aug-
mentation. We first resized all the images to the same size,
i.e. 64 by 64. Initially, we believed that all it matters is
the topology of the character itself, and this is invariant to
skewed scaling. Also, considering we need to do transfer
learning on models pre-trained on grayscale data, we tran-
formed all the images from RGB to grayscale. We then
splitted the data into training set (4 / 5) and validation set (1
/'5) and train different models using Caffe + GPU.

Originally, there were only 7705 ‘good’ natural scene
characters in the dataset. The limited amount of dataset will
tend to overfit the trained model. Thus, we perform data
augmentation by adding various forms of noise (Gaussian,
Poisson, Salt and Pepper) to the original image. On top
of this, we also perform randomized rotations to the noisy
images, as illustrated below:

.

N DL

I\ |

Figure 3. Top: Original, Gaussian, Poisson, and Salt Pepper Noise
respectively, Bottom: Randomized rotations on top of the respec-
tive image directly above it

Note: data augmentation was only performed after we
noticed that our accuracy rate training from scratch was
capped at 0.82.

4.2. HOG + SVM

We treated the accuracy level of the effort of HOG +
SVM as our baseline. We tested on the streetview char-
acters. Unlike the CIFAR-10 data, we originally thought
color was irrelevant in this classification task. Hence, we
first performed HOG feature extraction from the grayscaled
images, followed by linear SVM.

We performed our experiment on both the digit (0-9)
subset and the entire dataset. In the digit subset, we have
2125 data total and we randomly picked 1400 of them to
train the SVM, and have 350 data points for validation and
finally test the model on 350 data points. Using HOG fea-
tures + linear SVM, we have achieved an accuracy of ap-
proximately 0.76 on both the validation set and the test set
for digits exclusively. However, when we trained SVM on
the entire dataset, it only obtained an accuracy of 0.45. The



results show that HOG feature is good at classifying just
numbers, but it is not sufficient to distinguish all the num-
bers and English characters.

We are still trying to find a way to visualize the weight of
the HOG features. If the background area carries relatively
small weights as compared to that of the foreground, it may
well suggest that the model is robust to the background, and
thus there is no need for us to include background subtrac-
tion as part of the preprocessing step .

Figure 4. HOG features for 0, 4 and 7 respectively

4.3. Convolutional Neural Network

We tried different CNN architectures and the results are
summarized in Table2] (before data augmentation) and Ta-
bld3| (after data augmentation). We have included the results
on synthesized fonts in TabldI]as reference. We will discuss
the details of the architectures in this section.

In general, we kill the process whenever the loss rate
stops to drop. In our case, most of the networks stops to
learn after 2000-3000 iterations. If any network stops learn-
ing before this, we decrease the learning rate. If the accu-
racy rate is way lower than expectation after many itera-
tions, we would increase the learning rate. We detect the
need of stronger regularization by comparing the loss when
evaluating against training and test set.

4.3.1 Transfer Learning using MNIST

We first tried transfer learning on LeNet5 as we think the
dataset might not be large enough to train the net from
scratch. We only changed the number of output in last FC
layer (from 10 to 62) and keep the remaining layers un-
changed. We obtained an accuracy of 0.76 on ‘good im-
ages’, which is far better than the baseline. However, in
order to do transfer learning on LeNet5, we resized all the
images to 28 by 28, which actually doesn’t allow too much
variation on the archetecture. In fact, we suspect that com-
pression like this might have removed some useful details
from the images. The limited variation in MNIST datasets
(only 10-class digits, all similar thickness, similar borders)
doesn’t help as compared to training synthesized font from
scratch.

4.3.2 Transfer Learning from Synthesized Fonts

Streetview images are printed fonts, which are more sim-
ilar to the synthesized fonts than to handwritten ones. In
addition to this, there are approximately 9 times more syn-
thesized fonts present in the dataset than that of the natu-
ral images. Thus, we hypothesized that performing transfer
learning from synthesized font might provide a good basis
for fine tuning when it comes to training on natural images.
Besides, it’s easy to augment the font datasets.

We prefer this instead of fine tuning directly based on
LeNet5, because in the case of synthesized fonts, the input
size is 64 by 64, which allows more pooling layer than in
LeNet5, which input size is only 28 by 28. Increasing pool-
ing layers might allow the CNN to visualize more general
structures. Hence, we trained different CNN on Fnt data
and then did transfer learning. In this case, we tried both
training from scratch and fine tuning from LeNet5 on syn-
thesized fonts.

Starting from four layer networks, we tested different
parameters for convolutional layer (Conv) and fully con-
nected layer (FC) and we added dropout and LeakyReLu
to reduce overfitting and increase accuracy. In our experi-
ments, dropout was helpful but LeakyReLu didn’t work as
we expected. When we increased to six layers, it achieved
0.90 accuracy on Fnt test data. We didn’t try deeper neu-
ral networks as we thought six layers were sufficient for a
problem of this scale. In the end, we did transfer learning
and get an accuracy of 0.79. (We tested tranfer learning on
all the previous font CNNss, but the results were similar.)

4.3.3 Training from Scratch

In the end, we trained CNN from scratch on natural images.
We obtained the same accuracies on two different strate-
gies tried. First we trained on ‘good’ images and tested on
‘good’ images. Then we first trained on ‘bad’ images, then
trained on ‘good’ images. Both of them gives the same an-
swer. The final model achieved 0.60 on ‘bad’ images and
0.82 on ‘good’ images.

We have tested on increasing the number of layers. There
wasn’t any noticeable difference, in terms of both loss his-
tory and both train and test accuracies. Overfitting wasn’t
an issue.

4.4. What Did Not Work

Noticing the early stagnancy in loss drop despite slow
learning rate, we suspected saturation hence applied leaky
ReLU. Howevever, we did not notice any improvement. We
suspect the problem lied in the lack of training data, hence
we applied data augmentation.

Unfortunately, data augmentation did not help signifi-
cantly, this might be because the noise added was not suf-
ficiently strong. If the noise were stronger, it would have



mimicked the effect of obscuring the edge, as well as a noisy
background. Another possible problem is that we random-
ized the rotation, whereas in reality most characters seg-
mented are only slightly slanted. Perhaps capping the rota-
tion to a small range might be more helpful.

Training on synthesized fonts by transfer learning from
LeNet5 was not useful, either. Even though the initial accu-
racy rate was higher, this edge was quickly catched up after
a few hundred iterations. Maybe this is because the struc-
ture of MNIST digits was overly simplistic for our usage
- uniform thicknesses, similar edges, nearly binary images,
and the absence of background. These are precisely the fac-
tors that our dataset lack.

Transfer learning from synthesized fonts did not make
things better. The synthesized characters in this dataset are
only made up of 4 different fonts, whereas the fonts in nat-
ural scene characters have much more varieties. In fact, this
might be the reason of high accuracy rate while training syn-
thesized fonts from scratch.

4.5. Results
Architecture Accuracy
on fnt
- ES _ -
[Conv ->ReLu] * 2->Pool -> ™

FC (1024) ->ReLu ->FC (62)
[Conv ->ReLu] * 2->Pool ->
FC (4096) ->Dropout (0.5) -> 0.86
ReLu ->FC (62)

[Conv ->LeakyReLu] * 2->
Pool ->FC (4096) ->

Dropout (0.5) -> 0.85
LeakyReLu ->FC (62)
[Conv ->ReLu] * 2->Pool ->FC (1024) 0.88

->ReLu ->Dropout (0.5)->FC (62)

[Conv ->ReLu ->Pool] * 2->[Conv ->
ReLu] * 2 ->FC (2048) ->ReLu -> 0.90
Dropout (0.5)->FC (62)

Table 1. Accuracy on Fnt images for various CNN architectures

Accuracy
Model on Streetview
Images
SVM on numbers 0.76
SVM on numbers & characters 0.45
CNN from scratch (RGB)
[Conv->ReLu ->Pool] * 2
->Conv->Relu ->FC (2048) 0.82
->ReLu ->Dropout (0.5) ->
FC (62)
CNN transfer learning 0.79
(GrayScale) )

Table 2. Accuracy on Street View images, before data augmenta-
tion

Accuracy on
Model Streetview
Images
CNN from scratch (RGB)
[Conv->ReLu ->Pool] * 2
->Conv->Relu ->FC (2048) 0.76
->ReLu ->Dropout (0.5) ->
FC (62)
CNN from scratch (RGB)
[Conv->ReLu ->Pool] * 2
->[Conv->Relu] * 2 ->FC (2048) 0.81
->ReLu ->Dropout (0.5) ->
FC (62)
[Conv ->ReLu ->Pool] * 2->[Conv ->
ReLu] * 2 ->FC (2048) ->ReLu -> 0.82
Dropout (0.5)->FC (62)

Table 3. Accuracy on Street View images, after data augmentation

5. Conclusion

From transfer learning on MNIST to transfer learning on
Fnt data to training from scratch on natural image data, we
gradually modified our strategy and tried out new architec-
tures. We found that dropout, adding more layers, using
RGB instead of grayscale worked while transfer learning,
while LeakyReLu didn’t help (details are discussed in sec-
tion[4.4). Finally, we achieved an accuracy of 0.82 on ‘good
images’ and 0.60 on ‘bad images’. This result is far better
than the baseline 0.55 which uses traditional methods.

There remains a lot to do. First of all, we haven’t anal-
ysed the error distribution of CNN. It’s hard for human to
distinguish between ‘1’ and ‘I’, ‘O’ and ‘0’, ‘1’ and ‘7’, so
how does CNN perform on these classes? We plan to use
the IPython user interface in Caffe to check the result. We
can use the ‘heat map’ [6]land ‘data gradient’[S]to visualize
the area that CNN is using to make classification and see if
it can ignore the background. Currently, we still don’t know
how to use Caffe framework to classify batches of images



(seems that we can only do this through the IPython UI).
Once we figure this out, we will test our model on Kaggle
competition [ﬂ

References

(1]

(2]

(3]

(4]

(5]

(6]

T. E. de Campos, B. R. Babu, and M. Varma. Character recog-
nition in natural images. In Proceedings of the International
Conference on Computer Vision Theory and Applications, Lis-
bon, Portugal, February 2009.

Teo de Campos, Bodla Rakesh Babu, and Manik Varma. Char-
acter recognition in natural images. 2009.

Ian J Goodfellow, Yaroslav Bulatov, Julian Ibarz, Sacha
Arnoud, and Vinay Shet. Multi-digit number recognition from
street view imagery using deep convolutional neural networks.
arXiv preprint arXiv:1312.6082, 2013.

Yangqing Jia, Evan Shelhamer, Jeff Donahue, Sergey
Karayev, Jonathan Long, Ross Girshick, Sergio Guadarrama,
and Trevor Darrell. Caffe: Convolutional architecture for fast
feature embedding. arXiv preprint arXiv:1408.5093, 2014.

Karen Simonyan, Andrea Vedaldi, and Andrew Zisser-
man. Deep inside convolutional networks: Visualising im-
age classification models and saliency maps. arXiv preprint
arXiv:1312.6034, 2013.

Matthew D Zeiler and Rob Fergus. Visualizing and under-
standing convolutional networks. In Computer Vision—-ECCV
2014, pages 818-833. Springer, 2014.

Thttp://www.kaggle.com/c/street-view-getting-started-with-julia



