Visualizing neuron role with dimensionality reduction of feature space

Justine Zhang
CS 231N Project

Abstract

Convolutional neural networks are hard to understand.
While conventional machine learning algorithms usually
rely on a set of readily interpretable features, it is often un-
clear how such semantic meanings map to a set of neurons,
and to the different layers of a network.

In this project, we attempt to better understand the ac-
tion of neurons and layers by capturing the most impor-
tant neurons and most important features that are learned
at each layer. While a naive approach that examines sin-
gle neurons yields readily interpretable features, we suggest
that neurons may not be the fundamental semantic unit in a
layer and that relative “importance” of a neuron is hard to
quantify. We next suggest a latent variable approach, using
singular value decomposition to view neurons and the im-
ages they classify in a low-rank space. We show that inter-
pretable features arise when examining sets of images cor-
responding to high singular values, and that interpretabil-
ity is loosely correlated with the magnitude of the singu-
lar value. We evaluate this new approach to visualization.
Finally, using the latent variable strategy, we make some
observations about the layer-by-layer behaviour of a pre-
trained CaffeNet model.

1. Introduction

Conventional machine learning algorithms generally rely
on the process of feature extraction. Input data X" is mapped
to some feature space ® consisting of reasonably inter-
pretable features, and the feature mapping ¢ is then used
to perform various tasks such as making predictions. In a
classification problem, for instance, we may train a linear
model that outputs some prediction h(w - ¢(x)) on example
T.

Convolutional neural networks have achieved strong re-
sults in the problem of image classification, but suffer from
the drawback of uninterpretability. While high level claims
can be made about the role of each neuron and each layer,
it is often unclear how a particular neuron contributes to
the classification task, and how the structure produces the
rich set of features learned. Having knowledge of the re-

lationship between network architecture and features could
allow one to better tune the structure of a network to pro-
duce better classification accuracies, and allow one to better
understand the salient features of a dataset.

More concretely, we would like to answer two questions:

e What image features result from a specific neuron or
group of neurons?

e Within each layer, which neurons produce the most
salient features?

1.1. Notation

We establish some notation that will be used throughout
the report. Suppose we have a neural network with layers
L1, ... L with number of neurons n1,...ng. Each layer
L; induces a feature mapping ¢; : X — R™ where ¢;(x);
is the activation of the jth neuron in L; corresponding to
input data z, for 5 = 1,...n;. We also establish that X
consists of n images =1, ... Zy,.

1.2. Overview of approach

Our general approach is to produce and study the im-
ages which trigger high activations on specific neurons. We
therefore infer the features associated with the neurons to
be the features which are common to these images. More
specifically, we consider the activations of neurons in a pre-
trained network on a dataset of images; for this project we
use CaffeNet and the 2012 Imagenet validation set.

This preliminary analysis suggests that while images
with high activations in select neurons have interpretable
features in common, many distinct neurons produce redun-
dant sets of images and ranking the features yielded in terms
of relative importance is not straightfoward. Additionally,
performing analyses based on previous literature suggests
that neurons may not be the most fundamental unit of se-
mantics, since high-scoring images in linear combinations
of neurons also yield interpretable results. This motivates
us to suspect that the feature space is lower rank and that
we should consider multiple neurons in aggregate.

Our more refined approach is therefore to perform trun-
cated singular value decomposition on the feature space,



and consider high-scoring images in latent dimensions cor-
responding to high singular values. Our results show that
while the magnitude of the singular value roughly corre-
sponds to feature importance, more work needs to be done
to more thoroughly capture the features revealed by the net-
work.

2. Related Work

Most of the previous work in understanding neural net-
works has relied on capturing behaviours of individual neu-
rons. On the neuron level, the simplest method is to exam-
ine images which produce high activations on target neu-
rons; images could be taken from datasets or generated via
gradient descent to maximize neuron activation, resulting
in interpretable features (see Erhan et. al, 2009). In Lee
et. al (2008), kth layer neurons were visualized by taking a
linear combination of the filters in the k£ — 1st layer which
are most strongly connected to them; the method found that
the second layer captured information about contours and
corners in an image. Zeiler and Fergus (2013) present an
approach which uses a deconvolutional network attached to
the original network to project activations of neurons at later
layers back to the input pixel space. This method revealed
some general problems with the original architecture of the
AlexNet model studied, such as clear aliasing due to large
strides; the visualizations hence informed changes to the
AlexNet architecture which produced performance gains.

Szegedy et. al (2014) suggest, however, that there is no
distinction between individual high-level neurons and com-
binations of neurons in producing interpretable features.
The paper demonstrated random projections of ¢ at various
layers which produced high-scoring images that produced
features that were as interpretable as those produced while
examining single neurons, suggesting that semantic infor-
mation is contained in the space of neurons, rather than in
single neurons. Much of our analysis is motivated by this
idea.

3. Approach

At a high level, we attempt to characterize features
learned by a trained network N = Lq,...Lj; by examin-
ing subsets of the corresponding validation dataset X'. We
proceed to outline specific methods used:

3.1. Single-neuron ‘“naive” method

First, we examine images which produced particularly
high, or particularly low activations on particular neurons.
Specifically, for neuron j in layer 7, we find and manually
examine images in

argmax,¢ v | (4i(2), e5)]

where ¢; is the jth standard basis vector (in general, we
will overload argmax to mean images for which the above
inner product is close to maximum). We select neurons to
examine in two ways. First, we consider neurons with high
variance in activations across the image dataset:

argmax; Varze x ((¢i(7), €;))

Intuitively, since these neurons produce more variable
activations for each image, we expect them to yield more
discriminating features. Hence, variance could loosely cor-
respond to “importance” of a neuron in representing a fea-
ture which plays a larger role in the layer. As a baseline,
we also perform the same procedure on randomly-selected
neurons.

3.2. Random projection method

Next, we consider the method presented in Szegedy et.
al. At layer ¢, we find and manually examine images in

argmax, ¢ (¢ («), v)|

where v is a random vector in R™. As in the first
method, we consider variance as a proxy for importance,
in this case of the random direction in which ¢; is pro-
jected. Hence, we set an empirically-determined cutoff of
Var,cx (¢;(x),v) > 850, which takes the tail of the distri-
bution of such variances across a sample of random vectors
v. We also randomly select directions without constraint as
a baseline.

3.3. Singular value decomposition method

Next, we consider a low-rank representation of the space
of features. Specifically, consider matrix ®; € R™*™ with
columns ¢;(x) for x € X. Hence, ®;(j ) = (di(7m), €;)
for j = 1,...n; and m = 1,...n. Intuitively, we can
consider neurons as objects with activation on each image
as a feature.

Let Ci)i be ® with columns normalized to mean 0 and
variance 1. We consider the low-rank approximation pro-
duced by truncated singular value decomposition:

= _ T
(I)i ~ (I)i,s - Ui,sSi,sV;‘,s

where s is the lower rank, S; s € R®? is the diagonal
matrix consisting of the top s singular values of ®;, U; s €
R™% has columns consisting of left singular vectors of ®;
corresponding to the top s singular values, and V; , € R*"™
has columns consisting of the right singular vectors. We
will denote each component as U, .S, V' for convenience.

Given this decomposition, we can now examine images
which have especially high or low values in each latent di-
mension. In particular, for dimension j = 1,...s we ,man-
ually examine images in
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where V is the jth right singular vector.

This method can be seen as an extension of the pre-
vious random projection method, in that truncated singu-
lar value decomposition considers directions which produce
the highest variance of features - in this case, activations on
neurons. Our initial hypothesis is that high singular values
yield images with distinctive or significant features within
each layer, whereas lower singular values may correspond
to less significant or interpretable features.

For each layer, we use scikit-learn’s randomized svd
function to perform truncated SVD. We choose the num-
ber of singular values to retain by enforcing an empirical
threshold of approximately 200, such that all singular val-
ues o < 200 were dropped.

4. Experiments

In this section, we detail some results.

4.1. Architecture and inputs

We perform our experiments on the CaffeNet architec-
ture, using the ILSVRC2012 classification task validation
set as our image dataset. CaffeNet consists of 5 convo-
lutional layers followed by 3 fully-connected layers. Our
analysis is repeated on all 8 layers; specifically, for each
convolutional layer, we study the activations produced by
the last layer in the conv-relu-pool-(norm) pipeline.

Out of the 50000 images in the validation set, we only
consider activations produced by the 28000 images which
are correctly classified by CaffeNet. Of these correct im-
ages, we choose a random subset of 6000 to allow our anal-
ysis to fit in memory.

4.2. Focused analysis of pool5 layer

Due to relatively interesting initial results, we start by
performing a more focused analysis of the activations in the
fifth convolutional layer after pooling, referred to below as
“pool5”. The layer contains 256 x6x6 = 9216 neurons (we
call numpy’s reshape function to flatten the 3-D structure of
the layer). Having noticed little difference in distribution
of variance or images produced either way, we will use the
normalized activations (as in <i>) for the entire analysis, for
consistency.

4.2.1 Single neuron analysis

We first perform the naive method detailed above. Initially,
we examine the distribution of variances of the (normalized)
neuron activations. A histogram of activation variances can
be found in Figure 1.

Figure 1. Histogram of variance of activations produced by images
in dataset for each neuron in pool5.

Figure 2. Images with the highest activations on neurons with high
activation variance, for poolS5 layer. From up to down, inferred fea-
tures are: humans with focus on face, white fluffy dogs, standing
humans.

With our initial view that neuron importance and feature
interpretability roughly correspond to activation variance,
the distribution of variances may suggest that a small subset
of the neurons in pool5 with top variance may contain the
most salient features in the layer. Indeed, examining the
sets of images with highest activations on the top 5 neurons
by variance, we see that many of these sets are unified by
readily interpretable features, as seen in Figure 2.

However, further analysis suggests that there may be
very little correspondence between feature interpretability
and neuron activation variance. For instance, sets of images
with high activations on randomly selected neurons often
have clear features in common as well, even though the ac-
tivation variance of that neuron is much lower, as shown in
Figure 3. We note that for variances less than around 0.5,
the features produced become much less interpretable, but
for variances above this threshold, the relationship is coarse
at best.

A second problem emerges: different neurons often pro-
duce similar-looking features. Within the high-variance
neurons, several correspond to sets of images which are
almost identical to the sets displayed in Figure 1. Addi-
tionally, the sets of images which produced exceptionally
low activations on many neurons were near-identical. This
suggests that the space of features as learned by single neu-
rons is highly redundant. This casts further doubt on the
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Figure 3. Images with the highest activations on random neurons,
for pool5 layer. From up to down, inferred features are: objects
with text, white and black rectangular objects, compact rectangu-
lar objects.
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Figure 4. High-scoring images for selected random projections.
Top to bottom: helmet and other rounded head shapes, parrot
colours.

idea that individual neuron activation variance corresponds
to feature saliency, since many neurons with smaller activa-
tion variances still yielded similar features to neurons with
larger activation variances.

It would make sense that variance in feature value has
some correlation to feature saliency - indeed, methods such
as PCA look for high-variance directions in feature space.
However, in the case of convolutional neural networks, we
suspect that this relation is complicated by two factors.
First, especially for earlier layers, localization as enforced
by the stride architecture means that adjacent neurons of-
ten behave in similar ways. Second, because networks are
deep, a low-variance neuron that is closely connected to a
high-variance region in a higher layer may still have a more
discriminative role in the classification process than a neu-
ron in a high-variance region within a single layer.

4.2.2 Random projection method

We next turn to the random projection method. Figure 4
shows some of the more interpretable sets of images which
score highly on projections in a series of random directions.
While some random projections do yield somewhat in-
terpretable sets of images, the relationship between these
images is more spurious than for single neurons. Addi-
tionally, as with the single neuron case, we note very little
difference in interpretability from high-variance projections
to lower-variance projections, and indeed, it wasn’t clear
whether random projections, or projections filtered for high
variance, produced more interpretable sets of images.
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Figure 5. Singular values for features in poolS5.

4.2.3 Singular value decomposition method

We now apply the truncated SVD method to the features in
pool5. Figure 5 displays a graph of the first fifteen singular
values of ®5; in light of this distribution, we set a target
rank of 8.

As detailed above, for each of the top singular values,
we consider the set of images with the highest and lowest
values in the corresponding right singular vector. These im-
ages are displayed in Figure 6.

Interestingly, this method produces highly interpretable
features for each of the dimensions corresponding to the
highest singular values. Additionally, among the high sin-
gular values, none of the features which emerge are re-
dundant, as was the case for the naive method on single
neurons. This suggests that truncated SVD reduces the re-
dundancy of the feature space quite effectively, as desired.
While it is hard to qualify relative importance or inter-
pretability of a feature, especially among the first few di-
mensions, we also note that dimensions corresponding to
lower features yield images whose relationship is unclear.
Notably, for dimensions beyond the 8th (not shown), the
sets of top-scoring images are quite similar, suggesting that
further dimensions are less well-separated. Conversely, this
is some assurance that gauging the quality of a feature based
on its “interpretability” by a single human being, while
sketchy, isn’t completely baseless, if we see some corre-
spondence between human interpretability and a quantity
such as the magnitude of the singular value.

Another interesting observation is that while high-
scoring images for particular neurons are often actually of
similar objects, whereas the sets of images produced via
the SVD method tend to span multiple completely sepa-
rate classes and instead share some abstract characteristic.
For instance the top images in the fourth dimension are all
yellow objects, and the bottom images in the seventh di-
mension are all obelisk-shaped objects, be it actual obelisks
or long bird necks. This suggests that perhaps the SVD
method captures more “fundamental” features learned at
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Figure 6. Top images for the top 8 latent dimensions in pool5.
Images at the top correspond to dimensions with larger singular
values than images at the bottom. Each successive pair of rows
corresponds to a latent dimension, with the first row consisting
of images with high values in that dimension and the second row
consisting of images with low values.

that layer (although how to quantify and validate this state-
ment is unclear).

Some notable pitfalls of the SVD method can also be
seen. First, while the magnitude of singular values drops
off significantly after the top few, the low-rank representa-
tion captures the feature space relatively poorly in terms of
thoroughness. Intuitively, given the rich diversity of fea-
tures that arise from our first two methods, it seems dubious
that each layer can be reduced to the 7 or 8 features (tech-
nically, x2 because we count high and low values) that arise
out of the SVD method. To quantify this, we consider the
reconstruction error of the low-rank approximation, given
as the Frobenius norm of the difference between the approx-
imation and the original matrix ®:
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Figure 7. Top and bottom images for largest singular values for
conv-relu-pool-norm1.
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Figure 8. Top and bottom images for largest singular values for
conv-relu-pool-norm?2.

Figure 9. Top and bottom images for largest singular values for
conv-relu3.

For s = 8, this value is 7050. (Normalizing for the num-
ber of entries in ® produces a slightly less frightening re-
sult.)

Finally, as the redundancy of the top images in the
later dimensions suggests, the features yielded by the SVD
method are limited by the number of large singular values
for ®. We could theoretically envision characterizing the
features accounted for in a layer as linear combinations of
the SVD features, although it is an unclear task to assemble
together separate visual features in this way.

4.3. Applying the SVD method to each layer

We conclude by applying the SVD method to each of the
8 layers of CaffeNet. For each layer, high and low scor-
ing images in dimensions corresponding to singular values
above a cut-off of approximately 200 are displayed in Fig-
ures 7-13 (pool5 already shown). For fully connected lay-
ers, since there are more large singular values, only a subset
of image sets are shown.

We make some general remarks about each layer. First,
we note that earlier layers tend to yield more abstract fea-
tures such as colour and texture than later ones; some of
the image sets for the fully-connected layers correspond
quite precisely to image categories (e.g. snails). Next, we
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Figure 10. Top and bottom images for largest singular values for
conv-relu4.
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Figure 11. Top and bottom images for selected singular values for
fc6.
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Figure 12. Top and bottom images for selected singular values for
fc7.

note that earlier layers have less large singular values than
later layers - indeed, the early conv layers only have one
large singular value, compared to the fully connected layers,
which have at least 8 each. While further study is needed
to explain this result, we suggest that this is because earlier
conv layers tend to learn more local features corresponding

Figure 13. Top and bottom images for selected singular values for
fc8.

to regions of the image (as determined by the convolution
stride), whereas fully-connected layers tend to yield more
global features.

5. Conclusion

We study various ways of visualizing salient features
produced at each layer of a convolutional neural network,
via examining subsets of images from a corresponding
dataset. Using CaffeNet and the ILSRVC2012 classification
task validation set as examples, we consider three methods
of visualization: a naive neuron-by-neuron method, a ran-
dom projection method, and a low-rank method via trun-
cated singular value decomposition. Our results on the fifth
convolutional layer suggest that the richness of features rep-
resented by each layer exceeds that which can be captured
by each method, although certain quantities such as vari-
ance and magnitude of singular value can be treated as
rough proxies for determining feature importance. Finally,
using the SVD method, we visualize features for each of
the CaffeNet layers, and suggest that features represented
at each layer become progressively less localized and less
abstract.

5.1. Future work

A lot more work can be done in understanding how
convolutional neural networks behave via visualizing rep-
resented features (especially given that we admittedly
dragged our feet in starting this project). This project sug-
gests a few particular possibilities. First, the fact that glob-
ally important features are difficult to classify suggests that
layers might actually represent a rich set of localized fea-
tures, which could be characterized. One possibility is to
use a clustering algorithm to discern groups of redundant
or similar neurons, and infer features from each cluster;
the suspicion that a layer’s feature space consists of sev-
eral localized features suggests that agglomerative cluster-
ing might be fruitful. Exploring the degree to which fea-
tures capture local as opposed to global characteristics of
an input image could also be fruitful, and a study of fea-
tures could attempt to correlate similar features with the
actual coordinates of neurons within each layer. Finally,



examining how features interact across layers would also
be useful. As mentioned above, we suspect that impor-
tance of neurons as informed by activation variance might
have been obscured by the fact that a high-variance neu-
ron might forward-propagate into a low-variance region in
a later layer. Applying the ideas in Lee et. al could result in
more insights.
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