
Pose estimation using a variety of techniques

Keegan Go
Stanford University

keegango@stanford.edu

Abstract

Vision is an integral part robotic systems – a component
that is needed for robots to interact robustly and precisely
with their environment. For this project, I am interesed in
using vision to obtain pose (position and orientation) esti-
mates for objects. The goal is to develop a simple vision
system that can be attached to our robots which will give
us realtime estimates of positions for specific objects. I im-
plemented pose estimation using convnets on a very simple
dataset and compare this against a traditional multiview ge-
ometry approach.

1. Introduction

In manipulation tasks, such as picking up or moving objects,
it is helpful to obtain estimates of the position and orienta-
tion of those involved objects. At the Stanford robotics lab,
we have previously done a lot of work on control strate-
gies that use force feedback only. However, many of these
strategies are not robust in the sense that they require that
the initial alignment error is within a reasonable range. In a
controlled setting, this works great, but it does not general-
ize well when we want the robot to move around freely. One
solution, is to use vision methods to detect desired objects,
and estimate their positions so that we can still perform an
alignment prior to interacting with them.

Such a system has a number of requirements. It should
be relatively cheap to train in both a time and effort, since
the set of desired objects may change over time. At estima-

tion time, it should also run quickly with a relatively low
computational power since we’d like to deploy the system
on mobile platforms.

This project is divided into two parts. The first part at-
tempts to do pose estimates on some simple generated im-
age data using a convnet approach. The second uses a mul-
tiview 3d reconstruction approach. Details for each method
are included in their respective session, and a third section
discusses the differences between the two from an overall
implementation standpoint. (Note: the division between the
first two sections separates the work done for cs231n/a, re-
spectively).

2. Pose estimation with convnets

2.1. Background

A search for ”pose estimation” within the domain of con-
vnets brings up a large number of papers that deal with rec-
ognizing the pose of humans. In [3], the authors localize
the position of different segments of the human body, by
individually classifying and localizing body parts using a
sliding window and then linking these parts together in a
way consistent with the structure of the human body. In [4],
a regression model is used to localize the body parts. To
improve results, multiple frames are used together.

Neither of these works describe what we are looking for
in our version of pose estimation, however, they do suggest
possible methods to use. In our problem, we will assume
that objects are rigid and represented by a single part, rather
than being dynamic like the human body. While this simpli-
fies the problem in the respect that we do not need to resolve
the structure of multiple parts, the problem we focus on is
different since we would ideally like to obtain 3d informa-
tion from the image. But using the same ideas, there are
two approaches to consider. The first is to divide an object
to be detected into ”parts”, localize each part and then use
geometry to compute a rotation and position consistent with
the location of the detected parts. Note that in this case, the
convnet would essentially be used as a feature detector. A
more appealing option is to use regression to estimate the
parameters directly. This avoid the hassle adding additional

1



information about the location of different parts to the im-
ages of the object we are working with. Thus, a dataset may
be obtained by fixing the object in some location, and taking
pictures of it at known relative locations.

2.2. Approach

I generated a simple dataset. To simplfy the problem, I
considered only images of size 80× 80 of a black 2d plane
with a single white square placed on it. The position of the
square was generated from a uniform random distribution,
with bounds such that the square is always entirely inside
the image. The square is then rotated an angle drawn uni-
formly [0◦, 90◦] to avoid the problem of rotational symme-
try. Examples of the generated images are shown below.
I trained on a set of 1000 such images, and tested on 200
images. The number of training and test images were kept
small to mirror a reasonable amount that might be collected
by hand on a real 3d object if this method were to be ap-
plied.

I then formulated the problem using regression, that
is, for the i-th example, the convnet will predict qi =
(θi, xi, yi), the angle by which the square is rotated, as well
as an offset along the x, y-axes. The loss L of a prediction
of N examples is defined using an l2-norm penalty

L =
1

N

N∑
i=1

‖qi − qtruei ‖2

where qtruei is the true pose of the object. The gradient is
readily computed.

2.3. Results

Note that the simple baselines of least squares does not
work here, since with there are more pixels than we have
training examples. The table below summarizes the mean-
squared-errors for constant predictors giving a baseline to
compare our loss during training against.

Prediction Mean-square-error
θ 0.2078
x 221.0
y 193.3

I began with a simple two layer network (conv-relu-pool,
affine). In this case, the training loss and test loss both con-
vered to around 200, half that expected using constant pre-
dictors (i.e. not very good). A useful plot is to look at the

predictions for each parameters versus the truth value (the
equivalent of a confusion matrix for regression). The plot is
given below.

As the figure shows, none of the parameters are predicted
very well. Each of them is relatively, vertical indicating
that the convnet is defaulting to a nearly constant predictor.
One of the issues is the difference in scaling between the
different parameters we are trying to predict. To fix this, I
normalized the parameters so that they had approximately

2



the same variance, and then retrained the network. After
normalizing the data I reran the network and obtained the
following plot of prediction versus true value.

Interestingly, while normalizing the data greatly im-
proved prediction of the position, it did not help prediction
of the orientation. I trained using a deeper (4 layer) network
but the results remained roughly the same. [3] suggests that
the pooling layers may reduce the spatial precision which
could also hamper the ability for the network to predict ori-
entation. There may also be ambiguity in the data due to
rotational symmetry of the sqaure.

3. Pose estimation using multiview geometry

3.1. Background

The 3d pose estimation for general objects is a well stud-
ied problem in featured based vision methods. A well doc-
umented process is given by [2] and the higher level view is
given by [1]. The method described makes use of a number
of techniques which will be fully described in the approach
section, but essentially the ”training” part of the method
consists of two parts. The first is to find matching points
across multiple images. Second, these matches are used
to impose constraints on the images during reconstruction.
The process, and the subsequent pose identifiction has been
shown to work in realtime.

3.2. Approach/Results

The first step is obtain images of the object. [2] suggests
using 20 images, often 10 are sufficient. Example images
that I used are shown below.

I then extraced SIFT features from each image. For each
pair of images, we can then count the number of matches
that are sufficiently close between images. For a typical pair
of image, we typically obtain a large number of matches
some of which are false matches. Therefore the next is
to ”sift” out the good matches, by using the epipolar con-
straint.

3



The method applied is to select a random subset of
matching points, and perform the 8-point algorithm to ob-
tain a candidate F̂ for the fundamental matrix F . If the
matches are all good, then we expect that F̂ is close to F
and thus matching points in one image will be close to the
epipolar lines defined by F from the points in the paired
image. Repeating this method and taking the best F̂ as de-
teremined by the smallest epipolar line constraint violations
gives a set of filtered points that are likely to be matches.
An example of this matching is shown below, where the top
image is before filtering and shows a number of extraneous
matches, and the second image has most of these incorrect
matches removed.

One matches between pairs of images have been ex-
tracted, we can find matches between multiple view by tran-
sivitity. At this point we are ready for reconstruction.

The process of reconstruction works by choosing a num-
ber of points in 3d such that the projection of each 3d point
onto each image is consistent with the matches found. I
used Levenberg-Marquardt iteration to find a solution to this
nonlinear system. An example of the solution is shown to
the right.

The blue xs are the original points and the blue circles
are the positions of the cameras. The red xs are the recon-
structed points. The two have very similar shapes up to a
scaling factor. This scaling factor can then be accounted for
by fixing the distances between reconstructed points, but
the difference makes the reconstruction more conveninent
for viewing.

4. Conclusion
Of the two methods described above, the multiview ap-

proach seems more suited to this version of pose estimation.
It requires less data to be collected and labelled making it
easier to use different objects.

However, the convnet approach remains an attractive
prospect. While I was not able to get the setup to work
effectively, the possibility of learning a higher level repre-
sentation of 3d rotation and position is exciting since such
a convent would be (hopefully) scalable to many different
objects using transfer learning.

References
[1] Gordon and Lowe. What and where: 3d object recognition

with accurate pose, 2006.
[2] I. Gordon. Augmenting reality, naturally, 2000.
[3] A. Jain, J. Tompson, M. Andriluka, G. W. Taylor, and C. Bre-

gler. Learning human pose estimation features with convolu-
tional networks. arXiv preprint arXiv:1312.7302, 2014.

4



[4] Pfister, Simonyan, Charles, and Zisserman. Deep convolu-
tional neural networks for efficient pose estimation in gesture
videos, 2014.

5


