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Abstract

We extend the two-stream convolutional net architecture
developed by Simonyan for action recognition in untrimmed
video clips. The main challenges of this project are first
replicating the results of Simonyan et al, and then extending
the pipeline to apply it to much longer video clips in which
no actions of interest are taking place most of the time. We
explore aspects of the performance of the two-stream model
on UCF101 to elucidate the current barriers to better per-
formance in both UCF101 and untrimmed video. We also
explore whether or not training on the background videos
from the Thumos Challenge dataset (in which no actions of
interest occur in the video) improves action recognition.

1. Introduction
The two-stream architecture presented in Simonyan et al

[8] for action classification in video achieved state of the
art performance on the UCF-101 dataset despite being quite
conceptually simple. Like a radically simplified primate vi-
sual cortex, it splits the task of visual processing into two
parallel streams - spatial encoding (analogous to the ven-
tral, or what pathway), and motion encoding (analogous to
the where, or dorsal pathway). Much of its success stemmed
from the decision to bypass the difficult problem of directly
training a convolutional net to extract motion information
from video, as was attempted done by Karpathy et al [6].
Instead, they opted to use pre-computed dense optical flow
fields, stacked over consecutive frames, as inputs to the tem-
poral network.

However, the model was only evaluated on the UCF-101
dataset, which consists of short video clips in which the en-
tire video is classified as belonging to one of 101 action
classes [9], and each video is trimmed such that the action
is occurring for the entire extent of the video. It is unclear
whether and how it will scale to the more general problem
of recognizing actions in unconstrained video in which ac-
tions may begin and end at any time, and will likely occupy
only a very brief fraction of the total duration of the video
(see Figure 1 for a comparison of the number of frames per
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Figure 1. Trimmed versus untrimmed video: Number of frames in
the UCF101 versus Thumos Validation Set video collections.

video in each dataset). We note that this problem is dis-
tinct from recent work of Gkioxari et al [3], which focuses
on action localization in space. Here, we apply the two-
stream architecture on long video clips in which, for most
of the time, no action of interest is taking place, and evalu-
ate the model’s ability to recognize actions. We take advan-
tage of the Thumos Challenge 2014 dataset [5], which con-
tains much longer video clips annotated with the UCF101
action classes. We first replicate the key results from Si-
monyan et al. Then we apply the trained two-stream model
to untrimmed videos from the Thumos validation dataset.

2. Methods

2.1. Replication of key findings from Simonyan et
al

We first set out to replicate key findings from Simonyan
et al using Caffe [4]. Specifically, we aimed to fit spa-
tial and temporal models that achieved similar performance
on UCF101 as reported previously. All base models were
trained and tested using Caffe; we have included the pro-
totxt files used for all parts of this work for reference. We
made extensive use of custom Caffe data layers written in
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C++ for this project; all source code not in the standard
Caffe distribution in included in a zip file with this submis-
sion.

2.1.1 Pre-computing optical flow fields

As described previously, we used the OpenCV implemen-
tation of Brox optical flow field estimation to calculate x
and y flow fields for each consecutive pair of frames for all
videos used in this study. x and y flow fields for each frame
pair were stored in individual files as compressed jpeg files
after subtracting the mean flow per flow field, and scaling to
the range 0-255; a jpeg quality parameter of 25 was used for
all files. The throughput of this step was roughly 0.06 sec-
onds per frame pair for the UCF101 video files. Throughput
on the Thumos Background and Validation videos was re-
duced because those videos had to be resized to 320x240
from their original size of 240x180.

2.1.2 Training the temporal nets

Due to differences in our computational resources relative
to Simonyan et al, our replication effort differed in some re-
spects from the training procedures and model architectures
described therein. Most of the computational heavy lift-
ing was performed on an Amazon EC2 g2.2xlarge instance
with an nVidia K520 GPU with 4GB memory. This is a
rather less GPU memory than was available to Simonyan
et al, and using a temporal window size of L = 10 con-
secutive optical flow fields per input, along with their net
architecture, would have required us to use a rather small
batch size of 16. Based on advice from Serena Yeung,
we therefore opted to use an Alexnet architecture, along
with L = 5. This allowed us to use a batch size of 128
for training the temporal net. We implemented a custom
Caffe data layer in C++ to construct stacks of flow fields
as described in Simonyan. Specifically, the data layer ran-
domly picked a frame, f , from each video in the mini-batch
and then stacked the x and y flow fields for frame pairs
(f, f+1), . . . , (f+5, f+6) into a single input volume with
2L = 10 channels. This data layer was also responsible for
rescaling the flow fields to their original scales. A random
227x227 crop of the original frame was performed, along
with random horizontal flipping; these operations were of
course applied to the entire flow stack. Similar to the train-
ing schedule used by Simonyan, we trained this model for
120,000 iterations starting with an initial learning rate of
0.01 decreased by a factor of 10 every 40,000 iterations. As
reported previously, we used a dropout rate of 0.9 in the
fully connected layers to control overfitting. Training was
performed on the training data from the first UCF101 train-
test split.

We were also interested in whether or not including Thu-
mos background videos as an additional class, i.e., videos in

which it is guaranteed that none of the UCF101 actions are
taking place, would help performance in untrimmed video.
We therefore fine-tuned the last fully connected layer of
the temporal net using the trained temporal net on UCF101
videos plus a random sample of flow stacks from the first
300 background videos. For this finetuning, we trained
with a batch size of 128 for 45,000 iterations, with an initial
learning rate of 0.001. The learning rate was decreased by a
factor of 0.1 every 15,000 iterations. We used a dropout of
0.9 during fine-tuning.

2.1.3 Training the spatial nets

The spatial net model is similar to that reported in Simonyan
et al. Because they reported results for simply fine-tuning
the final layer of a pretrained net on the UCF101 data that
were realistically within the margin of error for a fully
trained net, we opted to fine-tune a net pre-trained on Im-
ageNet to this new task. For this net, we started with the
VGG CNN M 2048 model from the Caffe model zoo and
fine-tuned the last layer for 80,000 iterations using an ini-
tial learning rate of 0.001, reduced by a factor of 10 every
20,000 iterations, and a batch size of 64. As for the tem-
poral net, we had to implement a custom Caffe data layer
that would sample a random frame from the each video
file in each mini-batch; these frames were also randomly
cropped to 224x224 and randomly horizontally flipped. Fi-
nally, similar to the temporal nets, we fine-tuned our spatial
net using background videos for 45,000 iterations with an
initial learning rate of 0.001, reduced by a factor of 10 ev-
ery 15,000 iterations. As for the temporal net, training was
performed on the training data form the first UCF101 train-
test split.

2.1.4 Evaluating the temporal and spatial nets on
UCF101 Test videos

In order to evaluate our spatial and temporal nets on
UCF101 videos, we had to implement yet more custom
Caffe data layers to perform the test time procedure de-
scribed by Simonyan et al. Specifically, the temporal net
test time code chose 25 frames from the entire extent of each
test video. From each of these frames, 10 optical flow field
stacks were constructed using the four corners plus centers
of each stack, plus their horizontal flips. Thus, the tem-
poral net was run on 250 inputs for each input video clip.
An analogous process was run for the spatial net, again us-
ing a custom data layer. We used a modified version of the
extract features.cpp program included with Caffe
to extract the softmax probabilities from running the spatial
and temporal nets on the UCF101 training and test videos.
The softmax probabilities were average-pooled over all 250
of the crops/flips for each video clip, yielding a single vector
of class probabilities for each video clip in UCF101. Note
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that these last steps were performed in R - we apologize for
using a computing environment the TAs are unlikely to be
familiar with, but it was simply the most familiar environ-
ment for us! R scripts are included in the submission.

2.2. Applying the two-stream model to unclipped
video

Applying the two-stream model to untrimmed video is
uncharted territory, and it was not clear how to extend the
test time procedure used by Simonyan et al to untrimmed
video. Clearly, we don’t want to simply take 25 equally
spaced frames from a 10,000 frame video! We opted for a
simple sampling strategy - we would simply use every tenth
frame from the Thumos validation set video files. Thumos
validation videos are all 30 frames per second, so this cor-
responds to sampling the videos every third of a second.
Given this sampling density, there are still two issues we
wanted to evaluate. First, the sparsity of actions of interest
in untrimmed video suggested that we might benefit from
explicitly learning a null, or BACKGROUND class. We ad-
dressed this question by testing spatial and temporal mod-
els fine-tuned with Thumos background video data in ad-
dition to the UCF101 files. Second, we wished to know
whether or not pooling input over a larger time interval,
tpool, would help performance. This was motivated by the
observation that the performance achieved in UCF101 was
heavily dependent on pooling the net outputs over all 250
inputs from each video clip. We addressed this question by
varying the pooling parameter tpool from 1 second to 2 and
4 seconds. Finally, as minor point, we evaluated the use
of different methods for combining the spatial and temporal
model outputs - specifically, we evaluated two non-linear
models - neural nets with ReLU activations and dropout
and gradient boosted trees - in addition to model averag-
ing. As before, custom data layers and modified versions
of extract features.cpp were used in these experi-
ments, along with the gbm package in R for fitting the gra-
dient boosted model and pylearn2 for fitting the neural net
models.

Finally, we note that due to time constraints, we were
not able to run our models on the full Thumos validation set
of 1010 videos. Instead, we used only the first 339 videos,
comprised of 173,380 frames of video. The primary bot-
tleneck was pre-computing the optical flow for these files
- running the trained models took relatively little time in
comparison. One consequence of this is that many action
classes are not represented at all in the validation set that
was evaluated.

Model Train acc Test acc Train acc Test acc
per frame per frame per video per video

Simonyan
spatial NA NA NA 72.7
Simonyan
temporal NA NA NA 81.0
Simonyan
mean NA NA NA 85.9
Spatial 83.8 54.4 98.9 68.8
Temporal 87.5 54.9 98.2 75.2
Mean 95.8 67.5 99.7 82.2

Table 1. Training and test set video level accuracy on UCF101 Test
set 1 per frame and per video.

3. Results

3.1. Two-stream performance in UCF101

Our first goal was to approximate the two-stream model
results on UCF101. The performance of our spatial
and temporal models, along with model averaging on the
UCF101 test set, is shown in table 1. First, we note that
our performance is within 2-5% of the state of the art re-
sults previously reported by Simonyan. Once we achieved
this level of performance, we did not make more effort to
improve performance as we deemed this sufficient to pro-
vide insight into the performance of the two-stream archi-
tecture on untrimmed video. Second, note that we provide
accuracies at the per-frame level in addition to the per-video
accuracies reported by Simonyan. We also include training
set accuracies. This is to point out two observations about
the two-stream architecture applied to UCF101. First, even
with very aggressive dropout and reduced model capacity,
our temporal stream is still showing substantial overfitting,
especially at the per-video level. This suggests that sub-
stantial performance gains are to be had from simply get-
ting more data, more data augmentation, and more con-
strained/better regularized models. Second, the spatial and
temporal nets have roughly equal accuracy at the per-frame
level, but the test time procedure benefits the temporal net
substantially more than the spatial net (75.2% from 54.9%
versus 68.8% from 54.5%). This suggests that some differ-
ence in the distribution of activations of the temporal versus
spatial nets over the time course of these trimmed videos
that might be exploited in future work.

We also observed that the spatial and temporal nets are
good at recognizing quite different action classes (Figure 2).
Table 2 shows the top ten classes sorted by degree of differ-
ence in the test set accuracy of the temporal versus spatial
nets at the per-video level. Note that among these classes,
the differences in accuracies are all in favor of the temporal
net, with some of the differences being greater than 50%!

3



0.00

0.25

0.50

0.75

1.00

0.25 0.50 0.75 1.00
Temporal Net per class accuracy

S
pa

tia
l N

et
 p

er
 c

la
ss

 a
cc

ur
ac

y

Per class accuracy, Temporal versus Spatial Net, UCF101 Test 01

Figure 2. Per-class accuracies in UCF101 Test for spatial and tem-
poral nets (R = 0.206)

We hypothesize that this reflects the fact that the spatial net
must recognize actions by essentially recognizing objects in
the frames, while the temporal net recognizes actions based
on motion. These results suggest that the classes in Table 2
do not have distinguishing objects for the spatial net to learn
to recognize, at least at the scale of the UCF101 dataset.
Alternatively, it may be that the distinguishing image com-
ponents for these actions classes are simply not represented
well by the pre-trained net. This problem could then per-
haps be alleviated by a larger training set such that the spa-
tial net can be trained successfully from scratch. We also
examined the confusion matrix for the spatial and tempo-
ral nets on the UCF101 test set. Heatmaps of the confu-
sion matrices are provided as supplementary figures. We
note that the temporal net is confused by class pairs such as
”Shaving beard” and ”Brushing teeth”. The temporal net is
also confused by the motion fields for ”Basketball”, ”Band
Marching”, and ”Ice Dancing”. The spatial net, in contrast,
appears to show confusion about classes such as ”Brushing
Teeth”, ”Apply Lipstick”, and ”Apply Eye Makeup”, i.e.,
sets of classes in which the frames contain a common main
subject (i.e., a face) and the distinguishing objects are of-
ten small and without much in the way of texture. This is
consistent with the idea that the temporal stream is learn-
ing to recognize distinctive motions as opposed to simply
responding to objects blurred by motion in the flow field.
We must note, however, that the small size of the test set (¡
3300 videos and 101 classes) suggests that these results are
subject to high variance.

3.2. Performance in untrimmed video

We evaluated the performance of the two-stream model,
plus non-linear models trained on per-frame softmax prob-
abilities from the two-stream model, on the first 339 videos

Class Temporal acc - Spatial acc
Surfing 96.7
Jumping Jack 93.3
Hammer Throw 64.7
Skiing 60.0
Sky Diving 55.9
Archery 54.2
Pole Vault 50.6
Diving 49.4
Drumming 37.2

Table 2. Per class accuracy in UCF101 Test set 1 - differences in
performance between the spatial and temporal nets.

of the Thumos Validation set. In the following discus-
sion, we evaluated the performance of the models as fol-
lows. First, softmax probabilities were extracted for ev-
ery tenth frame in the videos, or every 1/3 of a second.
Second, these probabilities were average pooled over non-
overlapping time intervals of length tpool of either 1 sec-
ond, 2 seconds, or 4 seconds. These probabilities were then
evaluated for accuracy using the AUC at different thresh-
olds of the class probabilities (using a single threshold for
all action classes), and for precision and recall. Note that
Thumos task 1 essentially asks, whether or not each of the
UCF101 actions occur at any time during the video. Thus,
our predictions over this dataset was distilled down to a ma-
trix whose rows are class probabilities for each video. The
AUCs of the various models is shown in Table 3. In this
table, GBM refers to a gradient boosted tree model trained
on per-frame softmax probabilities from both the temporal
and spatial nets. The GBM model was fit using initially
for 1000 iterations using a shrinkage parameter of 0.0025
on 90% of the training data, and an interaction depth of 6.
After determining the optical number of iterations using the
multinomial loss on the held out training data the model was
fit for that many iterations on the full training set. NN refers
to a 3 layer neural network model using ReLU activations
and droput = 0.5, with 100 hidden units per layer. Figure
3 shows the partial ROC plots and precision versus recall
curves the the models using tpool = 4 seconds.

We note the following trends in the results. First, training
to recognize an explicit background class using data from
background videos appears to help performance as mea-
sured by AUC in the spatial and temporal models. How-
ever, this benefit is diminished by simply using a larger
tpool and provides little benefit for the non-linear models.
In fact, we observe the puzzling phenomenon where the
NN model does better without having seen background ex-
amples, which runs counter to the trend in the other mod-
els including the GBM model. It is not clear why that is,
though we note that the training procedure for these net-
works was not uniform. Basically, we used a held out por-

4



0.00

0.25

0.50

0.75

1.00

0.00 0.25 0.50 0.75 1.00
1 − Specificity

S
en

si
tiv

ity

Classes

UCF101

UCF101+Background

Model

spatial

temporal

mean

gbm

nn

ROC Plots with t_pool = 4 seconds

0.00

0.25

0.50

0.75

1.00

0.00 0.25 0.50 0.75 1.00
Recall

P
re

ci
si

on

Classes

UCF101

UCF101+Background

Model

spatial

temporal

mean

gbm

nn

Precision vs Recall, t_pool = 4 seconds

Figure 3. ROC and Precision vs Recall of NN on untrimmed video, tpool = 4 seconds

tion of the training data as a validation set. The models
were initially trained until the objective on the validation
set had not improved for 3 epochs. The models were then
further trained using all of the training data until the objec-
tive on the validation set was equal to the objective on the
training set during the first run, or until our patience and/or
time ran out. Unfortunately, this happened rather sooner
for the NN model with background examples, so it may be
that this model was simply not trained adequately. Second,
all things being equal, it appears to help to pool over larger
tpool. However, this effect is relatively weak, though quite
consistent across the models. Third, the benefit from non-
linear models over simple model averaging of the spatial
and temporal nets is marginal at best. Fourth, it is odd that
the temporal net substantially underperforms the spatial net
in this dataset given the edge it has in UCF101. We hy-
pothesize that this is due to the specific action classes that
appear in the first 339 videos of the validation set. Clearly,
we should have at least randomly chosen videos from the
validation set instead of processing them in order! Finally,
we note that the AUC is not a very good measure of accu-
racy in a task such as this because the ground truth matrix is
very sparse - there are only 400 actions out of 34,239 possi-
ble action annotations in 339 videos and 101 action classes.
Specifically, we note that a recall of 50%, the precision gap
between the best and worst models is about 15%.

4. Discussion

We have approximately replicated the results of Si-
monyan’s two-stream architecture on UCF101 and applied
the resulting models to untrimmed video from the Thumos
Validation dataset. We found that training explicitly to rec-
ognize background, or ”no action of interest” videos, helps
performance. We also found that increasing the time frame
over which we pool class probabilities has little impact on
performance, and that in this dataset, model averaging will
likely perform as well as more complex non-linear models.

Model tpool = 1 tpool = 2 tpool = 4
Spatial 0.874 0.877 0.878
Temporal 0.815 0.817 0.819
Mean 0.884 0.887 0.887
GBM 0.885 0.891 0.893
NN 0.901 0.902 0.902
Spatial + Background 0.882 0.884 0.885
Temporal + Background 0.830 0.832 0.835
Mean + Bacground 0.899 0.902 0.902
GBM + Background 0.890 0.894 0.894
NN + Background 0.892 0.893 0.894

Table 3. Thumos Task 1. Action recognition in untrimmed video.
Due to time constraints, we were only able to run the system on
339 out of 1010 video clips from the validation set.

We hypothesize that this simpler model ensemble is more
resistant to differences in between the UCF101 and Thumos
videos. Our project met its primary endpoints of replicating
Simonyan’s work and learning about the issues that pertain
to action recognition in untrimmed video. However, it is
also quite clear that this project has significant limitations
that would be fun to address in future work. We note that
this approach completely ignores the sequential nature of
the input aside from pooling information in small temporal
windows. Additionally, the covariance structure of the ac-
tion classes is completely ignored. However, we view these
limitations as minor due to the limited size of the dataset.
Rather we believe that the first orders of business if one
were to make a serious attempt to scale the two-stream ap-
proach to untrimmed video would be get a lot more data and
to deal with the overfitting problem.

More broadly, the approach of pre-processing frames in
order to get optical flow fields is computationally intensive
and very much against the spirit of most recent work us-
ing deep convolutional nets for computer vision in that we
cannot back-propagate errors through the motion estima-
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tion procedure. At least three plausible avenues of attack
are apparent for dealing with this rather distasteful inele-
gance. First, recent work on using convolutional nets for
image segmentation and depth map prediction [7, 2] sug-
gests that it may be possible to train a convolutional net us-
ing flow fields as targets directly. This network could then
be used as a pretrained network for using motion for action
recognition, with the fine-tuning of the entire stack. How-
ever, this approach strikes us as practical but still somewhat
unsatisfying. It presupposes that dense motion fields are a
good representation for action recognition. It is clear that
visual systems as embodied by, say, our visual cortex, does
not maintain a dense optical flow map as such. An alter-
native approach is to learn a representation of video frames
that is useful for action recognition directly from consecu-
tive video frames, as was originally envisioned in Karpathy
et al [6], and embodied in one form by the C3D features
desribed in [11]. However, our opinion is that the really in-
teresting solutions to this problem will use recurrent archi-
tectures to explicitly model sequences of video frames at a
high level [1, 10]. While our opinion is rather uninformed,
we note that is a lot better informed than it was when we
started this class! :-)
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