
Applying Partial Learning to Convolutional Neural Networks

Kyle Griswold
Stanford University

450 Serra Mall
Stanford, CA 94305

kggriswo@stanford.edu

Abstract

This paper will explore a method for training convolu-
tional neural networks (CNNs) that allows for networks that
are larger than the training system would normally be able
to handle to be trained. It will analyze both the validation
accuracy of each method and the time each method takes to
train to determine the viability of this method of training.

1. Introduction
1.1. Motivations

One of the main bottlenecks in modern CNN design is
the time and memory it takes to train a CNN. Even though
increasing the depth of the network generally increases it’s
performance, researchers are not always able to take advan-
tage of this fact due to system constraints. The new training
methodology is designed to help mitigate these concerns.

1.2. Main Methodology

In order to help alleviate these problems, the new train-
ing methodology splits the desired CNN architecture into
groups of layers (which we will refer to from this point for-
ward as stages) and then trains each stage on the training set
in sequence. From here on out we will refer to this training
methodology as Partial Learning and the standard method-
ology of training every layer at once as Total Learning. The
idea behind this is that training each stage seperatly will
give comperable accuracy to training every stage together,
but will require less memory and computational time, which
will allow for larger networks.

1.3. Experimental Plan

In this paper, we will first evaluate CNNs with architec-
tures that our system can train with Total Learning and com-
pare the performance of these architectures between Total
and Partial Learning. We will then implement architectures
larger than our system can handle with Total Learning and

see if the accuracy of these architectures with Partial Learn-
ing improves above the accuracy of the initial architecture
with Total Learning.

2. Related Work
This paper does not deviate from the currently accepted

methodologies of training CNNs (for example, those de-
scribed by Karpathy [4]) except in using Partial Learning
instead of Total Learning. The closest methodology to Par-
tial Learning that we have found is in stacked auto-encoders
(like those described in Gehring [2]), but there are sev-
eral important differences between stacked auto-encoders
and Partial Learning. The first is that while both method-
ologies split the training into stages, stacked auto-encoders
use unsupervised training on the stages while Partial Learn-
ing trains each stage to classify the inputs into supervised
classes. Another difference is that stacked auto-encoders
are fine-tuned over the whole network after they are trained,
while this fine-tuning is impossible for Partial Learning be-
cause it is used on networks too large to train all at once.

3. Approach
We will now go into the specifics of our experimental

strategy.

3.1. Concrete Description of Training Methodology

We will start the training process by spliting the CNN
architecture we want into stages, where the output of one
stage is exactly the input to the next stage (that is, the next
stage doesn’t have any more inputs and the output is not
sent to any other stages) (splitting the CNN into stages that
form a directed acyclic graph instead of a linear chain is
an experiment for another paper). We then start with the
first stage and attach a fully connected linear classifier onto
the end of it and train this CNN on the original training data
inputs and outputs. When the training for stage 1 is done we
remove the linear classifier and run each training example
through stage 1 to get our new feature vector and use this

1



Figure 1. Diagram of the information flow in a CNN trained with Partial Learning

new feature vector (with the corresponding labels) to train
stage 2 with the same process. We repeat this process until
all of the stages are trained, at which point our final CNN
is fully trained (Note that we keep the last stage’s linear
classifier to use as the final score generator). Figure 1 shows
a diagram of this process.

4. Experiment
4.1. Data Set

The data set we will be using is CIFAR-10. Since this
is an experimental methodology, it is more efficient to work
with a smaller dataset to quickly run experiments than larger
datasets that will take a long time to train on and may not
give any good results.

4.2. Implementation Details

We used numpy [1] as the matrix algebra system to im-
plement our architectures, along with initial code from the
CS231n course at Stanford distributed from [3]. To train
each architecture, we trained each stage with one epoch and
with a batch size of 50. To find the hyper-parameters, we
first found a learning rate and regularization that gave rea-
sonable results on the baseline CNN - CNN 1. The learn-
ing rate and regularization we chose was a learning rate of
10−4 and a regularization of 1. We used these as the initial
hyper parameters for every stage (we didn’t hand optimize
each stage because then the results would depend more on

how much time we spent hand-optimizing each stage than
the actual merits of each one) and then used 10 iterations of
random exponential search from a normal distribution with
mean 0 and standard deviation 1 to find the best hyper pa-
rameters for each stage. We did this hyper-parameter tuning
on a per-stage basis, so each stage could be trained with a
different learning rate and regularization. Since this means
that the training on identical prefixes for different architec-
tures should give the same results for each prefix, we only
trained each prefix once and used it for both architectures to
save on time (for example the first stage for CNNs 1,6 and
8). After this was finished, we repeated the process, but this
time with two epochs and only 5 additional hyper parameter
iterations.

We then ran T-SNE (using an implementation we got
from [5]) to analyze the features produced by our CNNs.

4.3. Experiments

We will be experimenting with the 8 CNN architectures
outlined in Table 1. Note that in the table, Conv-n-m means
that the layer is a convolutional layer with a filter size of nxn
and has m filters. Pool-n means that this layer is a max-pool
layer with an nxn viewing range and a stride of n. Also note
that the linear classifier for each CNN is a fully connected
linear classifier at the end of each stage to convert it into the
scores for each label - this is just omited from the table for
the sake of brevity.

2



Stage Number CNN 1 CNN 2 CNN 3 CNN 4 CNN 5 CNN 6 CNN 7 CNN 8
1 Conv-3-32 Conv-3-32 Conv-3-32 Conv-3-32 Conv-3-32 Conv-3-32 Conv-3-32 Conv-3-32

Conv-3-32 Conv-1-32 Conv-3-32 Conv-1-32 Conv-3-32 Conv-1-32 Conv-3-32
Pool-2 Pool-2 Pool-2 Pool-2 Pool-2

2 Conv-3-32 Conv-3-32 Conv-3-32 Conv-3-32 Conv-3-32 Conv-3-32 Conv-3-32
Pool-2 Conv-1-32 Conv-3-32 Conv-1-32 Conv-3-32 Conv-1-32 Conv-3-32

Pool-2 Pool-2 Pool-2 Pool-2 Pool-2 Pool-2
3 Conv-3-32 Conv-3-32

Conv-1-32 Conv-3-32
Pool-2 Conv-3-32

Table 1. CNN archetectures we will experiment with.

4.4. Explaination of Architectures

CNN 1 is the standard CNN with 2 conv layers and
trained all in one stage, which is analogous to Total Learn-
ing. CNN 2 is the same architecture as CNN 1, but trained
with Partial learning instead. CNN 3 takes each conv layer
in CNN 2 and converts it to a 2-layer Network-in Network
layer instead of a linear layer. CNN 5 adds an additional
pooling layer at the end of the first stage of CNN 3 to seper-
ate each stage of Conv layers from each other. CNN 7 adds
an additional third stage to CNN 5 with the same architec-
ture as the other two stages. CNNs 4,6, and 8 are all exten-
sions of CNNs 3,5, and 7 respectively where we convert the
network-in-network layer into a standard 3x3 convolutional
layer.

4.5. Evaluation Methods

We will mainly be evaluating our CNNs on their vali-
dation accuracy and training time. Specifically, we will be
testing if CNNs trained with Partial Learning have faster
training times than when trained with Total Learning, and
whether architectures too large for Total Learning have
higher accuracy than baseline architectures trained with To-
tal Learning.

4.6. Expected Results

We anticipate that CNNs trained with Partial Learning
will have slightly lower accuracy than CNNs with the same
architecture but trained with Total Learning. The Partial
Learning trained CNNs will have lower training time re-
quirements than the Total Learning trained CNNs though,
which should allow for the larger CNNs trained with Partial
Learning to have similar memory and time requirements to
the inital CNN trained with Total Learning, but with greater
accuracy.

4.7. Actual Results

The results we got for best hyper-parameters for each
stage, as well as the training time, training accuracy, and
validation accuracy for those hyper parameters are detailed

in Tables 2 and 3. We also ran T-SNE on the features pro-
duced by CNNs 7 and 8 from the 1 epoch and 10 hyper
parameter iterations set of experiments. We didn’t run it on
any other architectures because CNNs 1-6 gave too many
output dimemsions for our T-SNE implementation to han-
dle, and the CNNs 7 and 8 in the 2 epoch case didn’t have
good validation accuracies, and thus their output features
won’t be linearly seperable like we are hoping to see. The
results of those T-SNEs are in Figures 2 and 3.

5. Conclusion
5.1. Primary Analysis of Results

We first compare the time CNNs 1 and 2 take to see if
Partial Learning makes the CNNs train faster. Looking at
the results, we see that this is not the case though since the
time for CNN 2 is either approximatly equal (in the 1 epoch
case), or CNN 2 is slower (in the 2 epoch case). This is not
to say that a more heavily optimized implementation would
not give better results (eg. we did not have enough memory
to convert every input image into the features of each stage
all at once, so we had to do the conversion repeatedly for
each batch), just that our implementation does not give a
speed up.

Next, we compare the validation accuracies of CNN 1
and CNN 2. Since these two have the same architecture, the
only accuracy differences between them will be due to the
Partial vs. Total Learning. In each case, CNN 2 has lower
accuracy, which is to be expected. In the 1 epoch case, the
validation accuracy is only 3% lower, which is promising -
this means that the accuracy cost of splitting the architec-
ture into stages may be low enough to make Partial Learn-
ing viable. The 2 epoch case gives us a 6.5% difference
in accuracy. This is not as good as the 3% accuracy from
the 1 epoch case, but it is still low enough to make Partial
Learning potentially viable.

Finally, we compare the accuracies of CNN 1 with the
extended architectures of CNNs 3-8. Looking at the vali-
dation accuracies for each case tells us that only one CNN
was able to beat CNN 1, specifically CNN5 in the 2 epoch

3



Result CNN 1 CNN 2 CNN 3 CNN 4 CNN 5 CNN 6 CNN 7 CNN 8
Learning Rate 0.000069 0.000100/ 0.003244/ 0.000269/ 0.000547/ 0.000069/ 0.000547/ 0.000069

0.000721 0.008321 0.005026 0.000111 0.000957 0.000111/ 0.000957/
0.000000 0.009278

Regularization 0.282346 1.000000/ 0.153250/ 0.074457/ 0.131378/ 0.282346/ 0.131378/ 0.282346/
0.481662 0.000687 0.067618 0.018597 0.023609 0.018597/ 0.023609/

0.875551 0.001889
Time (in seconds) 2767.89 2762.73 4750.57 6753.39 2881.07 5106.26 4265.47 7104.93
Training Accuracy 0.535 0.474 0.463 0.537 0.135 0.465 0.122 0.501

Validation Accuracy 0.540 0.510 0.460 0.531 0.144 0.512 0.127 0.531

Table 2. Results for the CNNs with 1 epoch and 10 hyper parameter iterations

Result CNN 1 CNN 2 CNN 3 CNN 4 CNN 5 CNN 6 CNN 7 CNN 8
Learning Rate 0.000705 0.000100/ 0.000146/ 0.000340/ 0.000761 0.000705/ 0.000761/ 0.000705/

0.000128 0.000216 0.012252 0.017744 0.000602 0.017744/ 0.000602/
0.000021 0.000180

Regularization 0.018425 1.000000/ 0.994257/ 0.067439/ 0.078767/ 0.018425/ 0.078767/ 0.018425/
0.302135 0.226451 0.105700 0.004098 0.006584 0.004098/ 0.006584/

8.292548 1.096897
Time (in seconds) 5499.41 6436.17 8748.34 14565.57 5709.78 9950.23 8036.87 13911.29
Training Accuracy 0.654 0.529 0.201 0.508 0.677 0.549 0.113 0.161

Validation Accuracy 0.618 0.553 0.223 0.542 0.630 0.573 0.134 0.212

Table 3. Results for the CNNs with 2 epochs and 5 hyper parameter iterations

case, but since the difference is only 1.2% this could eas-
ily just be due to random chance. At first glance this seems
to pretty clearly indicate that Partial Learning doesn’t help
increase the size of the architecture because the validation
accuracy cost is just too high.

Looking closer at the value of the accuracies instead of
just comparing them tells a different story though. Specifi-
cally, if you look at CNNs 5 and 7 in the one epoch case and
CNNs 3,7,8 in the two epoch case, we see that their accu-
racies are abnormally low - too low to mearly be caused by
it simply being a poor choice of architecture - these accu-
racies indicate that the networks were not trained properly.
A first guess at a cause would be a bug in the code some-
where, but all of the architectures with low accuracy share
all of their code with other architectures that did fine (eg.
the code for the stages in CNN 5 and 7 is used by stage 2 in
CNN 3, even though CNNs 5 and 7 have terrible accuracies
with one epoch and CNN 3’s accuracy is fine). This, cou-
pled with the fact that the optimal learning rate for the last
stage of CNN 7 with one epoch is so low that we can’t tell it
apart from 0, seems to indicate that these abnormal results
are simply the product of poor hyper-parameters.

Looking at the way we chose our hyper parameters sup-
ports this further - we started by hand optimizing for CNN
1, so the initial hyper parameters already started with CNN
1 having the advantage. We then only used a random search

with a relatively short number of iterations, which means
that if the hyper parameters didn’t start off at reasonable
values for a given architecture, then they might never find a
reasonable value through random search before we stopped
trying hyper parameters, which would result in the abysmal
accuracies that we see in our tables.

Additionally, if those architectures were affected by poor
hyper parameters, there is no reason to think that the other
architectures weren’t also affected, albeit to a lesser degree.
This means that the architectures we have might have been
able to get better validation accuracies than CNN 1 if they
had better hyper parameters, which would mean that Partial
Learning might be viable.

This is still very speculative though - while the results
do fit what we would expect if we had poor hyper param-
eter choices, there are still other explainations that could
explain these results as well (eg. that the poor hyper pa-
rameters didn’t affect the better architectures as much as we
thought and even with better hyper parameters they would
still not do significantly better than CNN 1). This means
that while these results may indicate that Partial Learning
may be viable, more study is needed to determine whether
it is or not for sure.

4



Figure 2. Results of T-SNE on CNN 7

5.2. Tangential Analysis of Results

First of all, if you look at the optimum learning
rate/regularization for each stage in the multi-stage archi-
tectures, they seem to vary substantially from the optimums
in other stages - sometimes by several orders of magnitude.
This might simply be a fluke brought about by how we
chose our hyper parameters, but considering the high vari-
ance of the optimum parameters between stages it would be
worth experimenting with different learning rates and hy-
per parameters between different layers. It becomes even
more interesting when you see that if you remove the archi-
tectures with abysmal validation accuracies (ie. those with
poor hyper parameter choices), every architecture except
one has the learning rate increasing and the regularization
decreasing between stages (specifically CNN 6’s learning
rate and CNN 4’s regularization in the 2 epoch case).

The construction of the T-SNE images was meant to
show how much the CNNs had transformed the data to be
linearly seperable, but they ended up still looking scattered

with no decernable pattern.

5.3. Future Work

The first thing to do would be to use a better hyper pa-
rameter search algorithm. If the conclusions about poor hy-
per parameters being the cause of the poor performance is
correct, this will give us results that show whether or not
Partial Learning is viable or if the cost of splitting up the
architecture is too high. We should be wary of attempting
to hand optimize these though, because we could easily end
up with results that correspond more to how much we hand
optimized each architecture than whether each architecture
was good or not.

We could also experiment more with using unsupervised
learning techniques. Our experiments trained each stage by
trying to classify the input images directly, which one might
think would give the best parameters for the main classifi-
cation task, but it could also be that unsupervised learning
would be better for the intermediate stages. This could be a

5



Figure 3. Results of T-SNE on CNN 8

relatively simple way to increase the performance of Partial
Learning.

Also, our system was not able to hold both the original
images and the derived features in memory at once, so we
had to do the conversion for every batch. This is very ineffi-
cient, especially for multiple epochs, so if we are able to get
a better system then we might be able to fix this. This would
increase the training speed of Partial Learning, which could
make it noticably faster than Total Learning.

It would also be helpful to be able to experiment with
this on larger, more state-of-the-art architectures. This is be-
cause the information we find on small architectures might
not generalize to the larger ones, and even if it did, using
larger architectures could make any subtle differences be-
tween Partial and Total Learning more apparent.

It would also be worthwhile to experiment with different
learning rates/regularizations for each layer. We could try
independent learning rates for each layer, we could try hav-
ing a base learning rate and then multiplying it by a constant

for each layer we go up, or any number of other schemes.
It might not work of course, but it would definitly be worth
trying.

References
[1] N. developers. http://www.numpy.org/, 2013.
[2] Y. M. F. W. A. Gehring, J; Miao. Extracting deep bottleneck

features using stacked auto-encoders. Acoustics, Speech and
Signal Processing (ICASSP), 2013 IEEE International Con-
ference, pages 3377–3381, 2013.

[3] A. Karpathy. http://cs231n.github.io/assignment2/, 2015.
[4] A. Karpathy. http://cs231n.github.io/convolutional-networks/,

2015.
[5] L. van der Matten. http://lvdmaaten.github.io/tsne/, 2015.

6


