
Image Classification with Pyramid Representation and
Rotated Data Augmentation on Torch 7

Keven (Kedao) Wang
Stanford University
kvw@stanford.edu

Abstract

This project classifies images in Tiny ImageNet Chal-
lenge, a dataset with 200 classes and 500 training exam-
ples for each class. Three network architectures are experi-
mented: a traditional architecture with 4 convolutional lay-
ers + 2 fully-connected layers; a Tiny GoogleNet with 3
inception layers; and a pyramid representation-based net-
work. Tiny GoogleNet achieved the highest top-1 valida-
tion accuracy of 47%. Work is done to reduce overfit-
ting. Dropout improves validation accuracy by 10%. Data-
augmentation of random crop and horizontal flip increased
validation accuracy by 10%. Rotation does not appear
to improve validation accuracy. Pyramid representation
shows significant computational efficiency, achieving sim-
ilar top result 240% faster computation time per batch.
Training accuracy converges at 65 - 70% for all three net-
works. Future work is to increase expressive power of net-
work. Training was done on Torch 7 with Facebook’s Deep
Learning Extension.

1. Introduction

The task with image classification is to assign an image
with a label from a set of classes, and strive for the high-
est accuracy possible. This project uses the Tiny ImageNet
classification challenge in CS231N class. This dataset is a
reduced version of the ImageNet Challenge dataset. Tiny
ImageNet dataset has 200 classes. Each class has 500 train-
ing samples, 50 validation samples, and 50 test samples.
Each image is 64 × 64, with bounding box of object spec-
ified. Each image has exactly one class of interest. The
metrics of interest is top-1 accuracy.

This project uses Convolutional Neural Networks, which
assumes local image features can be extracted the same way
regardless of location - i.e. the same 3× 3 filter can be used
to extract features from anywhere on the image. Training is
done on one Nvidia K520 GPU with 4Gb memory.

This project uses Torch7 library with Deep Learning

CUDA Extension (fbcunn) [2], the open-source library by
Facebook to construct, train, and test the network.

2. Background
2.1. History

Convolutional Neural Networks was first put into practi-
cal use for MNIST dataset (60k handwritten digits) classifi-
cation in 1995 [5]. LeNet 5 achieved near-human-level test
error rate of 0.9% on this 10 class classification task.

CNN was first used for large-scale image classification in
2012 for ImageNet challenge [4]. The test error rate of 17%
is almost half of the error rate of previous year’s models,
which was based on non-CNN approaches.

2.2. Convolutional Neural Networks

2.2.1 Convolutional Layer

Convolutional layer consists of small filters (usually of size
3 × 3, 5 × 5) to convolve in 2D space on an image. Each
filter is 3D in shape, with depth equal to the depth of input
data (3 in the first layer, for 3 RGB channels). Each filter
outputs a 1 × 1 × depth column. Each filter, depending
on the weights trained, is responsible for a particular task
(horizontal / vertical edge detection, etc.) The reasons to
use filters are:

1. It greatly saves parameters. Each convolutional filter
has a small number of weights (e.g. a 3 × 3 filter on
the first stage only has 3 × 3 × 3 + 3 = 27 weights),
regardless of the size of input.

2. It assumes local features can be extracted the same way
regardless of location, which is true for object position
that is randomly distributed.

The early convolutional layers are responsible for ex-
tracting low level features, with the late stages responsible
for higher level features [10]. This is because each subse-
quent layer can ’see’ a larger patch of the original image.
For example, taking a filter size of 3×3 the first layer ’sees’

1



3×3 neighboring pixels, and ’squeezes’ it into a single pixel
column. The next layer can effectively see 5 × 5 neighbor-
ing pixels of original image. The later stages ’see’ a growing
window aggregated by previous layers.

2.2.2 Pooling Layer

A pooling layer effectively downsamples an input. Max
pooling, which takes max value of a patch, is used in this
project. The reasons for pooling layer are:

1. It saves computation for later stages by reducing the
data size.

2. It enables later convolution stages to ”see” a larger im-
age patch.

2.3. Optimization

Batch Gradient Descent with momentum update is used.
This technique adds inertia and friction to the update func-
tion, which is shown to converge more quickly than vanilla
gradient descent.

v = momentum · v − lr · dx

x = x+ v

2.4. Hardware progress

Today, computation is the biggest bottleneck for training
large scale CNNs. Techniques of pooling is used largely
to speed up computations. The number of weights used
in LeNet in 1995 was 600k. The number of weights used
by AlexNet in 2012 has grown to 100M. The training time
still takes weeks on state-of-art GPU, which is optimized
for highly parallel matrix multiplication tasks.

2.5. Open-source frameworks

There has been multiple open source frameworks to train
CNNs on GPU. The most popular one is caffe, developed at
Berkeley [3]. The advantage of Caffe is that it is plug-and-
play, but it is not very configurable. On the other hand, the
Torch 7 deep learning extension developed by Facebook [2]
is supposed to provide much more flexibility with the layers,
optimization process, data augmentation, etc. It also sup-
ports data- and model-parallelism across GPUs. Although
I was not utilize that in this project (due to Terminal.com
having only a single GPU device per instance [9]), it is the
trend going forward.

3. Approach
3.1. Framework

Torch 7 with Deep Learning CUDA Extension is used for
this project. The extension has the following advantages:

• It offers great flexibility in defining the optimiza-
tion criteria, data augmentation, network architectures,
since all of these are defined in Lua.

• Lua has smaller memory footprint than python. The
interpreter is faster than python’s.

• It supports model and data-parallelism. As CNNs get
bigger, multi-GPU training will be the trend to scale.
A typical model in this project takes 8 hours to train
till convergence. Leveraging 2 GPUs means doubling
the iteration speed for choosing network architectures
and hyper-parameters.

• It supports reading from file system directly via multi-
ple threads. No intermediate data store is necessary.

• It uses CUDNN, the experimental deep learning
framework released by NVidia. In the long term this
will be faster than naive GPU implementation, since
the optimization is done at a lower level [6]. Currently
it only offers 1.2x performance improvement.

It has also these disadvantages:

• Lua has a bit of a learning curve. Doing the same task
in python would easily be 2x to 4x faster, given my fa-
miliarity with Python and better IDE / debugging tools
available.

• Lua has a much smaller developer community, and
therefore a smaller library ecosystem / documentation.
I did not find this to be an issue in this particular
project. Since for all the tasks, such as image manipu-
lation, there are readily available Lua packages.

3.2. Architectures

Traditional, Tiny GoogleNet, and Pyramid representa-
tion architectures are experimented with.

3.2.1 Traditional

The following traditional architecture produces the best re-
sult among traditional architectures. It has 4 convolutional
layers + 2 fully connected layers. It is a scaled-down ver-
sion of AlexNet. [4]

3.2.2 Tiny GoogleNet

A downsized 3-layer GoogleNet is used. GoogleNet argues
that features generated at different scales are equally inter-
esting [8]. It therefore concatenates output from 1× 1, 3×
3, 5 × 5 into the output feature vector. An additional pool-
ing output is used to allow for higher level features to be
extracted by the next layer. In this project, each ’inception’
layer uses filter sizes of 3×3, 5×5, 7×7 to further increase
the view window.

2



Figure 1. Traditional architecture: 4 convolutional layers + 2
Fully-Connected Layers.

Figure 2. Tiny GoogleNet: 3 inception layers to capture multi-
scale image features.

3.2.3 Pyramid Representation

The pyramid representation of images is also explored. An
alternative approach to capturing larger scale image features
is to downsize the input first, and then use a smaller filter
size on the downsampled image. For example, instead of
applying a 5× 5 filter on original image, a 3× 3 filter is ap-
plied on a max-pooled image (size 2 stride 2). The viewing

window proportion remains the same. The advantage is that
the smaller filter computes much faster than a larger filter.

In this pyramid architecture, the 64× 64 image is repre-
sented in a pyramid scheme as 64 × 64, 32 × 32, 16 × 16.
Each representation undergoes three layers of convolution
with 3×3 filters. This project’s pyramid layer takes 64×64
input, and produces 16×16 output. The results are concate-
nated depth-wise into a single feature matrix. This brings
two main challenges:

• Downsampling images makes a branch produce
smaller size than the original image. This issue is
addressed by adding pooling layers after convolu-
tional layers in non-downsampling branches, essen-
tially forcing higher-resolution branches to output the
same size as the lowest-resolution branch. For exam-
ple, the non-downsampling (64× 64) branch uses two
max-pooling layers, the half-downsampling branch
(32 × 32) uses one max-pooling layer, while the
quarter-downsampling branch (16× 16) uses no max-
pooling layer.

• The output size to a pyramid layer is smaller than its
input size. This brings challenge to applying pyramid
layers multiple times, as the output size will eventually
be too small. In this project, only one pyramid layer is
used.

In order to capture the image feature at even a larger
scale, a fourth branch which down samples to 8× 8 is used.
In order to match the different sizes (8 × 8 vs 16 × 16),
the output matrices are first reshaped to a one-dimensional
vector, and then concatenated into a single feature vector.

3.3. Overfitting

Because of the small number of training examples
(100k), overfitting is very likely on deep networks.

3.3.1 Reducing network size

Overfitting happens when a network’s expressive power is
too great for the amount of training data. The symptom is
as training accuracy approaches 100%, the validation accu-
racy remains low. Reducing the depth of a network can en-
able a network to continue learning. Krizhevsky used crop-
ping and flipping to increase training data size by a factor
of 2048, on the 1.4 Million ImageNet training samples [7],
yet still only used a network with 5 convolutional layers [4].
Therefore in this project, each network is limited to at most
four convolutional layers. Without data augmentation, al-
most all three network architectures specified above overfit
with training accuracy exceeding 99%.

3



Figure 3. Pyramid Representation: represent an image at 4 differ-
ent scales. 4 branches with 3 layers each.

3.3.2 Dropout

Dropout is done before each fully-connected layers.
Dropout probability of 50% is used. This is extremely ef-
fective, and improved validation accuracy by 10%.

3.3.3 Data Augmentation

Work is done to generate more training examples.
Crop & Flip: 56×56 Random cropping is performed on

64× 64 input. The ratio of 56/64 = 0.875 follows the ratio
of 224/256, as used by AlexNet and GoogleNet. Horizontal
flip is also performed. Cropping and horizontal flipping is
done at random on training time. At test time, 10 images
are fed into the model (4 corner crops + 1 center crop, each
flipped). They are performed on CPU by multiple donkey
threads, which does not add work onto GPU.

The 10-fold increase in training data significantly im-
proved validation accuracy by 10%. At validation time, 10
images accuracy is only roughly 2% higher than 2 images
accuracy (center-crop + flip).

Rotation: CNNs are highly sensitive to input rotations,
as shown by [8]. Therefore training inputs are rotated be-
tween -8 to 8 degrees by random, with empty space padded
with zeros, to provide more dynamic training samples. -8,
0, 8 discrete degrees of ration is used in this project, since
it increases the amount of training examples relatively only
slightly (by a factor of 3), and does not take too long to
converge. Rotation is added in both training and validation
time.

Figure 4. Data augmentation: 56×56 crop at 4 corners; horizontal
flip; -8, 8 degree rotation.

Experiment is done on different rotation schemes, in-
cluding different rotation ranges (e.g. -22.5 to 22.5 vs. -8 to
8 degrees), and granularity (continuous vs. discrete). Ro-
tation does not improve validation accuracy in this project,
while it takes longer to converge. It is possible that the net-
work has potential to reach higher validation accuracy, but
is not trained to convergence. It is also possible that the in-
crease of training examples is not enough. Greater range of
rotation and finer granularity can be used.

4. Experiment
Tiny ImageNet dataset is used. 200 classes, each with

500 training examples, 50 validation examples, and 50 test
examples are classified on. A single output label is gen-
erated for each sample, and is used to compute accuracy.
Top-1 validation accuracy is used as criteria.

4.1. Hyper-parameter tuning

Cross validation is done on learning rate and L2 regu-
larization. Random grid-search is performed. Since it is
suggested that a network is more sensitive to certain hyper-
parameters than others, performing random grid search cov-
ers more ground per parameter as compared to strict grid
search [1]. It was found that the learning rate of 0.015 works
well for most models, and is therefore chosen as default
learning rate. L2 regularization does not help with valida-
tion accuracy. Weight scale initialization is taken care of by
Torch 7 fbcunn. Momentum decay rate of 0.95 is used.

4.2. Accuracy

The three architectures achieved roughly the same out-
come. Tiny GoogleNet with 3 layers produces the best val-
idation accuracy of 46%, at a training accuracy of 70%. All
three networks have training accuracy converging at 65%
- 70%. Rotation augmentation does not improve accuracy.
The Pyramid network produces 43% validation accuracy,
with only 3 convolutional layers per branch, higher than the
42% accuracy by traditional architecture, which has 4 con-
volutional layers.

More layers could be added to potentially improve the

4



Network Architectures Accuracy Accuracy:
dropout

Accuracy:
data augmentation: crop + flip

Accuracy:
data augmentation: rotate

4 Conv + 2 Fully-connected 21% 30% 42% 39%
Pyramid 29% 43% 39%
Tiny GoogleNet 46% 45%

Table 1. Tiny GoogleNet performs the best. Dropout and data-augmentation improves accuracy greatly. Rotation does not help much.

Figure 5. First layer weights of Tiny GoogleNet. Interesting fea-
tures are learned.

Network Architecture Training time / batch (sec)
4 Conv + 2 Fully-connected 0.838
Pyramid 0.443
Tiny GoogleNet 1.074

Table 2. Pyramid representations results in most efficient compu-
tation due to small filter size and downsampling.

expressive power of each network, and therefore improve
accuracy. Tiny GoogleNet’s training accuracy of 70% is rel-
atively low, and therefore 3-layer GoogleNet is not expres-
sive enough. As training accuracy converges toward 100%,
validation accuracy could potentially improve as well.

4.3. Computational Efficiency

Training was done on all three network architectures.
Tiny GoogleNet takes 8 hours to train till convergence.
Pyramid network has the fastest training time of 0.443 sec-
onds per mini-batch (256 images / batch), which is 240%
faster than tiny GoogleNet. This efficiency is achieved by
Pyramid network having small 3× 3 filters, as compared to
the 3 × 3, 5 × 5, 7 × 7 filter sizes used by GoogleNet. In-
troducing dropout and data-augmentation significantly in-
creases time required to converge.

4.4. Features

The first layer weights of tiny GoogleNet show a clean
representation of edges and dots. This means the network is
learning the interesting information in an image.

Figure 6. Convolved images after first 5× 5 filter.

Figure 7. Convolved images after first inception layer 7× 7 filter.

5. Conclusion
All three network types have training accuracy converg-

ing at roughly 65 - 70%. This seems low. More layers could
be added to potentially improve the expressive power, and
therefore increase accuracies of these models.

Rotation does not increase accuracy at all. It is not clear
the reason why. It is possible that greater range and granu-
larity in rotated examples is required, or that longer time is
required to train network to convergence.

For the image classification task, the Pyramid represen-
tation of an image seems promising. The Pyramid network
is very efficient, and produces almost identical results to
tiny GoogleNet. Increasing the depth of Pyramid network
can likely lead to better performance.

CNNs can be used to analyze the content of pixel-based
data, and form surprisingly good understanding of the data

5



as a whole. Armed with the tool of GPU, one can dive into
understanding any other data format, as long as it can be
decomposed into pixels. This includes audio, video, and
beyond. There is no limit to where it can go from here.

5.1. References

References
[1] J. Bergstra and Y. Bengio. Random search for hyper-

parameter optimization. The Journal of Machine Learning
Research, 13(1):281–305, 2012.

[2] Facebook. Facebook’s extensions to torch/cunn, 2015.
[3] Y. Jia, E. Shelhamer, J. Donahue, S. Karayev, J. Long, R. Gir-

shick, S. Guadarrama, and T. Darrell. Caffe: Convolu-
tional architecture for fast feature embedding. arXiv preprint
arXiv:1408.5093, 2014.

[4] A. Krizhevsky, I. Sutskever, and G. E. Hinton. Imagenet
classification with deep convolutional neural networks. In
Advances in neural information processing systems, pages
1097–1105, 2012.

[5] Y. LeCun, L. Jackel, L. Bottou, C. Cortes, J. S. Denker,
H. Drucker, I. Guyon, U. Muller, E. Sackinger, P. Simard,
et al. Learning algorithms for classification: A comparison
on handwritten digit recognition. Neural networks: the sta-
tistical mechanics perspective, 261:276, 1995.

[6] Nvidia. Nvidia cudnn gpu accelerated machine learning,
2015.

[7] O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh,
S. Ma, Z. Huang, A. Karpathy, A. Khosla, M. Bernstein,
et al. Imagenet large scale visual recognition challenge.
arXiv preprint arXiv:1409.0575, 2014.

[8] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed,
D. Anguelov, D. Erhan, V. Vanhoucke, and A. Rabi-
novich. Going deeper with convolutions. arXiv preprint
arXiv:1409.4842, 2014.

[9] Terminal.com. The fastest linux cloud, 2015.
[10] M. D. Zeiler and R. Fergus. Visualizing and understanding

convolutional networks. In Computer Vision–ECCV 2014,
pages 818–833. Springer, 2014.

6


