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Abstract

The retina represents the first stage of processing our vi-
sual world. In just three layers of cells, the retina trans-
duces a raw electrical signal that varies with the number of
photons that hit our eye to a binary code of action poten-
tials that conveys information about motion, object edges,
direction, and even predictions about what will happen next
in the world. In order to understand how and why the retina
performs particular computations, we must first know what
it does. However, most models of the retina are simple, in-
terpretable models of the retina’s response to simple para-
metric noise, and there are no existing models that can ac-
curately reproduce ganglion spiking during natural vision.
In this paper we use convolutional neural networks to cre-
ate the most accurate model to-date of retinal responses to
spatiotemporally varying binary white noise. We also in-
vestigated how well convolutional neural networks in gen-
eral can recover simple, sparse models on high dimensional
data. Our results demonstrate that convolutional neural
networks can improve the predictions of retinal responses
under commonly used experimental stimuli, and provide
a basis for predicting retinal responses to natural movies
when such a dataset becomes available.

1. Introduction
One crucial test of our understanding of biological visual

systems is being able to predict neural responses to arbitrary
visual stimuli. As the first and most easily accessible stage
of processing in our visual pathway, the retina is a logical
first system to understand and predict. In only three layers
of cells, the retina compresses the entire visual scene into
the sparse responses of only a million output cells. Until the
1990s, these three layers of cells were thought to act only as
a linear “prefilter” for visual images [6, 10], however retina
studies in the last two decades have demonstrated that the
retina performs a wide range of nonlinear computations, in-
cluding object motion detection [18], adaptation to complex
spatiotemporal patterns [12], encoding spatial structure as

spike latency [9], and anticipation of periodic stimuli [22].
Despite the sophistication of these observations, retinal gan-
glion cells are still mostly described by their linear receptive
field [6], and models of retinal output usually consist of this
linear filter followed by a single, monotonic nonlinearity.

While simple linear-nonlinear models of the vertebrate
retina provide good approximations for how the retina re-
sponds to simple noise models like spatiotemporal Gaussian
white noise [1] or binary white noise [20, 21], there are no
known models that can explain even half of neurons’ vari-
ance during natural vision [7]. Despite this, retinal spiking
during natural vision is highly stereotyped [2, 3, 5].

Here we fit convolutional neural networks to experimen-
tal data of vertebrate retinas responding to spatiotemporal
binary noise as a proof of principle that convolutional neu-
ral networks can better predict retinal responses even in
a regime where simpler models already perform reason-
ably well. This work lays the foundation for establishing
a model that can accurately predict retinal responses to ar-
bitrary stimuli, including both simple parametric noise and
natural images. An accurate model of the retina is essen-
tial for understanding exactly what early computations our
visual system performs, and choosing the space of convo-
lutional neural network models allows us to compare our
model architecture with state-of-the-art convolutional neu-
ral networks performing classification vision tasks.

1.1. Problem Statement

Our problem amounts to transforming grayscale natural
movie clips into a single scalar number for each time point
t and each neuron n. Data pairs (X, y) will consist of in-
put X ∈ R3, with dimensions 100 pixels x 100 pixels x 40
frames, and labels y ∈ {[0, 1]}n, representing the probabil-
ity pnt of spiking for each neuron after the 40 frames of Xt.
Here the choice of 40 frames arises from the maximum du-
ration of 400 ms for a retinal ganglion cell receptive field,
and a 100 Hz frame rate stimulus.

The grayscale movie stimulus consists of 100 pixel by
100 pixel spatiotemporal binary white noise, which is com-
monly used for system identification since this stimulus in-
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Figure 1. Top: Example binary white noise frame presented by
NM to a salamander’s retina in the Baccus laboratory at Stanford
University. Middle: A cartoon of the experimental setup where
a CRT video monitor presents the stimulus to an ex vivo retina
situated on a 64-channel microelectrode array. Bottom: Example
retinal ganglion spike rasters after presenting 20 trials of the same
80 s stimulus to the retina. Repeats were used to estimate retinal
noise around empirical spike probabilities, but were not used for
training the network.

cludes all spatial and temporal frequencies (limited by the
spatial and temporal resolution of the experimental setup)
and 2100×100 possible patterns in a given frame (Figure 1).

Figure 2. Loss versus error between true normalized firing rates
and model’s predictions for cross entropy (black) and mean
squared error (red) loss functions. Since higher normalized firing
rates are expected to be noisier, the cross entropy loss penalizes
the same magnitude error less when the firing rate is higher.

Labels correspond to normalized number of spikes per
10ms bin, convolved with a 10 ms standard deviation Gaus-
sian. We convolve the raw spike trains with a Gaussian
smoothing window to reflect the noise inherent in any single
trial of retinal ganglion cell responses, where the width of
the Gaussian scales with the estimated noise of the retina.
Since the value per bin represents the probability of spik-
ing, skipping any smoothing step is equivalent to having
complete certainty of spiking in bins where a spike was
recorded, and zero probability of spiking in neighboring
bins. Here we will use the terms probability of spiking,
normalized number of spikes, and normalized firing rate in-
terchangeably.

We minimize the cross entropy loss (or, equivalently, the
logistic loss) L = − 1

T

∑T
t=0

[
yt log ŷt + (1 − yt) log(1 −

ŷt)
]

with L1 regularization on the network weights to pro-
mote sparse features. The cross entropy loss corresponds to
the negative log likelihood of the true spiking probabilities
given the model’s predictions. Here yt is the true smoothed,
normalized number of spikes in bin t, while ŷt is the net-
work’s output prediction, and T is the total data duration
in frames. The cross entropy loss has the nice property of
penalizing large errors more strongly than mean squared er-
ror (Figure 2). Under preliminary experiments using mean
squared error, the network was often content to always pre-
dict the mean firing rate.

While minimizing the cross entropy loss, we will evalu-
ate training, validation, and test accuracy according to the
Pearson correlation coefficient between the true normalized
firing rates and the model’s predictions.
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1.2. Technical Approach

1.2.1 Visual stimulus

We generated the stimulus via Psychtoolbox in MATLAB
[4, 15], which can precisely control when the stimulus com-
puter delivers each frame down to millisecond precision.
The CRT video monitor was calibrated using a photodiode
to ensure the linearity of the display.

1.2.2 Electrophysiology recordings

The spiking responses of salamander retinal ganglion cells
were recorded with a 64 channel multi-electrode array
(Multichannel Systems) in Professor Stephen Baccus’ Neu-
robiology laboratory at Stanford University. Since a single
cell may be recorded by multiple channels, we sorted the
spikes to each cell using PCA and cross-correlation meth-
ods. All experiments were performed according to the pro-
cedures approved by the Stanford University Administrative
Panel on Laboratory Animal Care.

1.2.3 Modeling

All simulations and modeling were done in Python using
the CS 231n convolutional neural network codebase which
we modified to support analog time series prediction instead
of classification, mean squared error and cross entropy loss
function layers, parameterized logistic function layers, and
arbitrary movie input. Although we initially invested a sub-
stantial amount of time into developing this work with Caffe
[13], modifying the data layer to support movies ended up
being nontrivial (in fact, the 4th google search result for
“Caffe convolutional neural network movie data” is our own
github repository).

Convolutional neural network architectures were in-
spired by retinal anatomy, where we experimented with ar-
chitectures that had the same number of layers as cell types
(5 layers), or had the same number of layers as cell body
layers (3 layers). We also tried 2 layer convolutional neural
network models and simple 1 layer models (e.g., LN mod-
els) for comparison. Figure 3 depicts an early convolutional
neural network architecture that we tested.

1.3. Results

1.3.1 Performance margin

An important consideration of any modeling endeavor is to
first understand both the current benchmarks to surpass (Ta-
ble 1) as well as the best possible performance, which in our
case is bounded by the trial-to-trial variability of the retinal
responses.

The state-of-the-art performance of retinal models varies
drastically on how sophisticated the input stimulus is. For

Figure 4. The correlation coefficient of a retinal ganglion cell re-
sponse during a given trial to its overall normalized firing rate (av-
eraged over many trials) ranges from as low as 30% in some cells
to as high as 90% in others.

one of the simplest possible stimuli, spatially uniform bi-
nary white noise, Pillow and colleagues [20, 21] have ex-
plained 90% of the variance in retinal responses, while for
non-parameterized naturalistic stimuli the best model in the
literature cannot explain even half of the variance.

Since this is the first application of convolutional neural
networks to modeling retinal responses, as a proof of princi-
ple we start from a commonly used stimulus, spatially vary-
ing binary white noise, that is relatively simple yet is capa-
ble of representing a wide range of possible spatiotemporal
patterns. Since this stimulus is high contrast, retinal noise
is also reduced relative to more naturalistic stimuli.

For this class of spatially varying stimuli, currently used
retina models achieve around 40% explained variance on
the most reliable cells (unpublished). However, the corre-
lation of a given cell’s single trial response to its overall
normalized firing rate, obtained from averaging many trials,
can be as high as 90% (Figure 4).

1.3.2 What is enough data?

Since experimental data is difficult to obtain, an important
question is how much data we need to train the convolu-
tional neural networks on retinal responses.

As a lower bound to how much data we need, we fit one
layer networks with parameterized nonlinearities to vary-
ing amounts of training data (from 1 minute to 50 minutes)
and evaluated the model accuracy using the Pearson’s cor-
relation coefficient between model predictions and the true
normalized firing rate on held-out data (Figure 5). This is
a lower bound on the data we need because presumably as
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Figure 3. Top: An example 4 frame white noise movie clip is presented to a genetically labeled retina from Josh Morgan in Rachel Wong’s
lab at UW [17], with an example spike raster representing the binary output of the ganglion cells. Bottom: An early convolutional neural
network architecture with one layer per cell type. The number of filters per layer were chosen to be greater than the number of functional
subtypes per cell type. The number of filters per layer increases with each layer similarly to how the number of subtypes per cell type
increases with each cell layer in the retina. In this model architecture, the input layer is 100 pixels by 100 pixels by 40 frames, followed
by four convolutional layers (each with a ReLU layer) and two max pooling steps. 128 filters was chosen as a rough upper bound on the
number of cell types in the retina. Output layer is fully connected with a cross entropy loss, and each scalar output represents the predicted
probability of a particular retinal ganglion cell spiking.

Study Area Stimulus Model Metric Performance
Keat et al. 2001 [14] retina full-field Gaussian white

noise
LN Average # spikes 0.47

Lesica and Stanley
2004 [16]

LGN Indiana Jones + noise LNP Correlation coeff. 0.6

David et al. 2004 [8] V1 Simulated natural images PSFT Explained variance 0.20
Pillow et al. 2005 [20] retina full-field binary white noise generalized IF Explained variance 0.91
David and Gallant 2005 [7] V1 natural images 2nd order Fourier

power model
Explained variance 0.4

Carandini et al. 2005 [6, 23] retina full-field Gaussian white
noise

LNP Explained variance 0.81

Pillow et al. 2008 [21] retina full-field binary white noise GLM Explained variance 0.9
Ozuysal and Baccus
2012 [19]

retina full-field Gaussian white
noise

LNK Correlation coeffi-
cient

0.88

Table 1. Summary of the recent literature in predicting early visual neuron responses. LN=linear-nonlinear, LNP=linear-nonlinear-poisson,
PSFT=phase-separated Fourier model, IF=integrate-and-fire, GLM=generalized linear model, LNK=linear-nonlinear-kinetic model.

we increase the number of layers, the model complexity as
measured by the number of parameters increases, and so the

amount of data needed to prevent overfitting increases.

Unfortunately, we found that even after 50 minutes of

4



Figure 5. Correlation coefficient between the LN model prediction
and held-out normalized firing rates as a function of the amount
of training data used in minutes. Blue is training accuracy and
green is validation accuracy, and each line represents a different
cell. Training on all available data yielded an average correlation
coefficient of around 0.7.

Figure 6. Linear filter estimated from reverse correlation between
the binary white noise stimulus and the normalized rates. Reverse
correlation required 36,000 time points (6 minutes) to recover the
LN model with the same fidelity as the LN fit to a convolutional
neural network after 5,000 time points (50 seconds).

training data, the validation and training accuracy did not
converge despite the one layer network (e.g. LN model)
learning sparse filters that looked qualitatively identical to
the reverse correlation between the held-out data and the
held-out true responses.

This could be related to the ability of linear mechanisms
to “fool” convolutional neural networks [11], since a small
amount of noise in the stimulus across its 100 × 100 × 40
values could produce a large change in network’s predic-
tion.

Figure 8. The LN fit to a 3 layer convolutional neural network
trained on 5,000 time points (50 seconds) of simulated data gener-
ated from a sparse LN model.

1.3.3 Weight scales for sparse data

A common recommendation in the tuning of convolutional
neural network hyperparameters to set the model’s initial-
ization weight scale to 2/N , where N is the total number
of inputs to the first layer. In our case, this translates to
a weight scale of O(10e−7). Surprisingly, we found that
models with small weight scale initializations consistently
had predictions with much lower variance than the true re-
sponses (Figure 7). Instead, we had to select weight scales
of O(1). This is likely due to the sparse nature of the un-
derlying retinal ganglion cell receptive fields, since only a
small number of weights are actually responsible for gener-
ating an accurate prediction.

1.3.4 Capacity for fitting small models

Given that the existing literature typically models the retina
as a simple LN model, we investigated how well three and
five layer convolutional neural networks could recover sim-
ple LN models after being trained on generated data. We
found that these more complex convolutional neural net-
works could capture the LN model with very little data (Fig-
ure 8). Even though individual filters in the three and five
layer networks did not resemble the original LN model used
to generate this data, the overall LN fit nonetheless closely
matches the true LN model after even 50 seconds of data.

1.3.5 Performance

We were able to achieve a new state-of-the-art performance
of almost 80% correlation coefficient with a three layer con-
volutional neural network trained on retinal responses to
spatially varying binary white noise. This is nearly twice
the correlation coefficient achieved by simpler models, such
as the LN model, that are currently used in the literature to
model the retina (Figure 9).
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Figure 7. A, B, D: Examples of model predictions (red) versus true probability of spiking from simulated data (black) at different temporal
scales when the the convolutional neural network is initialized with a weight scale smaller than O(1). C, E: Convolutional neural network
predictions (red) versus true probability of spiking (black) with weight scale O(1). The (black) underlying data was generated from a LN
model with sparse filters. The simulated data was convolved with a 10 ms Gaussian smoothing window to reproduce the level of noise
experienced in the real data.

1.4. Conclusion

This work provides a strong proof-of-principle that con-
volutional neural networks can and do provide more accu-
rate models of retinal responses compared to simpler, sin-
gle stage models. Moreover, convolutional neural networks
still retain some of the main advantages of simpler mod-
els since the overall linear and nonlinear properties of these
more complicated networks can still be evaluated by fitting
an LN model to the convolutional neural network. While
these results apply to spatially varying binary white noise,
these models can be easily trained on arbitrary stimuli once
more datasets are collected.

This convolutional neural network model of the retina
will be useful not only for researchers studying the retina,
but can also be used for high-level vision scientists and
computer scientists interested in having a virtual model of
the retina to ask how the output of early stages of biological
vision is used and transformed by the brain to yield the abil-
ity to perform complicated tasks like recognizing faces and
quickly detecting objects where humans still retain state-of-
the-art performance.
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