Tiny ImageNet Classification with Convolutional Neural Networks

Leon Yao, John Miller
Stanford University
{leonyao, millerjp}@stanford.edu

Abstract

We trained several deep convolutional neural networks
to classify 10,000 images from the Tiny ImageNet dataset
into 200 distinct classes. An ensemble of 3 convolutional
networks achieves a test set error rate of 56.7%. The top
single model achieves an error rate of 58.2%. It con-
sists of 5 convolutional layers, 3 max-pooling layers, 3
fully-connected layers, and a softmax loss. The model is
trained using dropout on the fully-connected layers and {5
weight decay to reduce overfitting. More refined analysis of
the ensemble’s classification errors yield insights into the
strengths and weaknesses of the model architecture.

1. Introduction

A fundamental problem in machine learning is effec-
tive representation of complex inputs such as images or
videos. Hand-engineered features have long been popular
in computer vision, and machine learning systems based on
these features have achieved excellent results on a variety of
tasks. [2, 10, 13] Ultimately, however, these features can be
brittle, difficult to design, and inadequately expressive for
complicated, high-dimensional inputs.

Deep learning offers the promise of eliminating the de-
pendence on hand-designed features and directly learning
features from data. Deep architectures build up complex in-
ternal representations and fully learn a compositional map-
ping from inputs to outputs, from images to labels. While
these methods have been known since the 1990’s [9], re-
cent improvements in computer hardware and optimization
methods have led to a resurgence of interest in neural net-
works and many impressive results. Indeed, deep models
have outperformed many hand-crafted feature representa-
tions and achieved state-of-the-art results on a significant
number of computer vision benchmarks. [8, 14]

Motivated by the success of Krizhevsky et al. [8],
Szegedy et al. [18], and several other groups in applying
convolutional neural networks to image classification, and
in particular, to the ILSVRC benchmark, [15] we apply
deep, convolutional neural networks (CNNs) to the Tiny

Imagenet Challenge. [19]

The 200 object classes that form the Tiny Imagenet
Dataset are challenging and exhibit significant ambiguity
and intra-class variation. To learn an image representation
capable of accurately separating these classes, a deep, high
capacity model is necessary. However, deeper, higher ca-
pacity models necessarily mean more parameters. This in-
crease in parameters make over-fitting a significant concern,
so we employ strong regularization techniques, e.g. dropout
[6], to combat over-fitting and increase generalization.

With a model ensemble of the top 5 performing CNN’s,
we classify the 10,000 test images of the TinyImagenet
dataset into 200 classes with an error rate of 56.7%. Ex-
amining the typical errors made by the model ensemble,
we identify several broad classes of images and objects for
which classification using CNN’s is easy, as well as several
classes where classification appears to be difficult. Focus-
ing efforts on these problem classes suggests that significant
reduction in the test error still is possible.

2. Data Set

Tiny Imagenet is a dataset of 120,000 labeled images be-
longing to 200 object categories. The categories are synsets
of the WordNet hierarchy, and the images are similar in
spirit to the ImageNet images used in the ILSVRC bench-
mark, but with lower resolution. [3, 15]

Each of the 200 categories consists of 500 training im-
ages, 50 validation images, and 50 test images, all down-
sampled to a fixed resolution of 64x64. The images are
all pre-processed by subtracting the mean image from the
entire Tiny Imagenet dataset from each image. No other
pre-processing is performed, so the input to the CNN’s are
mean centered RGB pixel values for each images.

Several of the images are difficult to classify, even for
humans. In Figure 1, example images for the class “popsi-
cle” and “plunger”, respectively, are given. In the Popsicle
image, it is hard to even recognize the woman is even hold-
ing a Popsicle, and, in the plunger image, the object to clas-
sify is not clear, especially since the plunger is being used
in an unorthodox fashion. These images highlight the chal-
lenges of building a robust model that achieves reasonable

Figure 2. TSNE Embedding of Tiny Imagenet CNN Codes

accuracy on the Tiny Imagenet dataset.

Despite the obvious obstacles in classifying images such
as those in Figure 1, the local geometry of the Tiny Ima-
genet image space appears to be favorable for image clas-
sification. To gain further intuition about this space, we vi-
sualized the images using t-distributed Stochastic Neighbor
embedding (t-SNE). [11] Using the top-performing CNN
as a feature extractor, we extracted 400-dimensional codes
from the last layer, and computed a 2-d embedding of the
codes. The result is visualized in Figure 2. The visual-
ization shows that the space can roughly be separated into
various semantic categories by a CNN. For example, there
is a distinct section of the embedding consisting almost ex-
clusively of automobiles and other consisting of people.

3. Selecting A High Performance Model

The space of potential model architectures for convolu-
tional networks is quite large, and selecting a high perfor-
mance model demands design decision along several differ-
ent axes. In this section, we detail the most important con-
siderations that produced our final model. Full details of
the experiments and results mentioned below are included
in the results section.

—10]] 10

Figure 3. Non-Saturating Activation Function

3.1. Non-Linearity

Following the work of Hinton and Nair [12] and the em-
pirical success of AlexNet and other models on ILSVRC,
it has become standard to use rectified linear units, ReLLU,
as the non-linear activation function for CNN’s. This is the
approach that we take as well. For each neuron, the out-
put f of its input is the non-saturating f(x) = max{0, z},
graphically depicted in Figure 3.

As pointed out in [8], ReLU often improves the learning
dynamics of the network, and this choice of activation func-
tion often significantly reduces the number of iterations re-
quired for convergence in deep networks. This is crucial for
experimenting with larger models on a very limited compu-
tational budget.

3.2. Model Architecture

1. Convolutional Layers: Given the complexity of the
image classification task and the small amount of avail-
able data, convolutional layers are critical to the suc-
cess of the CNN’s since they encode significant prior
knowledge about image statistics and have far fewer
parameters than other deep architectures. Experience
of other researchers [8, 18] and empirical results sug-
gest that deeper architectures are necessary to achieve
high performance on this task.

Our experimentation suggested that CNN’s with 5 or
more convolutional layers are needed to have sufficient
model capacity. On the other hand, these layers require
the largest amount of memory, so computational con-
straints limit the depth of the models.

2. Pooling Layers: Max-pooling (pool) layers are use-
ful in reducing the number of parameters in the net-
work by reducing the spatial size of the representation.
Given the limited memory requirements of GPU’s and
the effectiveness of large numbers of filters, these lay-
ers are particularly important to ensure the connection

P MIIPFRT
ARESERNN
mAEREY ANNE

Figure 4. Trained First Convolutional Layer Weights

between the final convolutional layer and the first fully
connected layer fits into memory.

We experimented with different numbers of pooling
layers. For models with reasonable filter depth, hav-
ing zero pooling layers exceeded hardware capacity.
However, we found best performance was obtained us-
ing the minimum number of pooling layers that hard-
ware supported, which was 3 for our model. This
corresponds to the largest possible spatial representa-
tion, and significantly outperformed models with more
pooling layers, e.g. those which pooled after each con-
volutional layer. To increase the amount of “non-
linearity” in the intermediate convolutional layers, the
pool layers were placed after two intermediate convo-
lutional layers.

. Filter Sizes: The height and width of the convolutional
filters play an important role in determining the capac-
ity and power of the CNN representation. Stacking
smaller convolutional filters on top of each other al-
lows the CNN to develop more power representations
of the input with fewer parameters. On the other hand,
smaller filters requires more memory to compute the
backpropagated gradients.

We experimented with filters of size k x k for k =
3,5, 7. Empirically, using several stacked, small 3 x 3
filters outperformed using filters of other sizes, even
considering the constraints placed on model size due to
memory consumption. For intuition about the learned
filters of size 3 x 3, Figure 4 gives a visualization of
the trained first layer filters from the best model.

. Number of Filters: We performed experiments using
filter banks of size n = 32,64, 128,256 and 512. Em-
pirically, models with smaller filter banks lacked suffi-
cient capacity and were unable to fully overfit the data.

On the other hand, models with 256 or 512 filters were
difficult to train and exhibited poor generalization. As
a happy medium between the two extreme, filter banks
with n = 128 exhibited good performance.

5. Fully Connected Layers: Fully-connected (fc) layers
contain the largest number of parameters in the net-
work. Therefore, more fully-connected layers directly
corresponds to increased model capacity and represen-
tational power. However, as expected, increased ca-
pacity also leads to overfitting.

We experimented with varying numbers of fully-
connected layers, and empirically found that 3—4 fully
connected layers, combined with strong regularization
to combat overfitting, produced the best results on the
test set.

3.3. Final Model

We detail the architecture of the single top performing
model, which achieved a test set error of 58% before being
ensembled with other models to produce our final submis-
sion.

The network consists of 8 layers. The first five layers are
convolutional (conv). These conv layers all have 128 filters
of size 3 x 3 each. To ensure input height and width are
preserved, padding of size 1 and a stride of 1 are used for
the convolutional layers.

To reduce dimensionality of the representation and con-
trol the capacity of the model, the second, fourth, and fifth
layers are followed by a max-pooling layer over 2 x 2 ker-
nels with a stride of 1.

Finally, these convolutional and pooling layers are fol-
lowed by 3 fully-connected layers. The first two layers both
have 400 neurons, and the final layer has 200 neurons which
are then fed into a softmax loss function.

Compactly, the final network architecture is

[[conv—relu] x 2—pool] x 2— [conv-relu-pool] — [fc] x 3—softmax

4. Training
4.1. Initialization

Both the 3-layer and 5-layer model with 32 filters were
randomly initialized using weights W;; ~ N(0,0.01). All
of the biases were initialized to 0. This choice of initial-
ization did not appear to have a significant impact on the
learning dynamics for these smaller models.

However, Gaussian initialization was not successful for
the 5 layer network with 128 filters and, more importantly,
not successful for the deeper, 8-layer network. In particular,
when the standard deviation was small, the loss function
did not decrease. This is likely because the backpropagated
error signal decayed too rapidly to be useful. On the other

hand, using a large standard deviation caused the loss to
explode to infinity.

Problems initializing deep networks frequently arise in
the literature, for example [1, 17]. To combat these issues,
the method of normalized initialization, or “Xavier” initial-
ization introduced in [1] is used. For each weight W;; in the
network,

V6 V6

Wi ~U |- :
N Vg e g i

where n; is the fan-in of the neuron and n;,; is the fan-
out. As before, all of the biases are zero-initialized. This
initialization allows training of the deeper models, which
is important since our results will show that deeper models
obtain higher test set accuracy.

4.2. Optimization

In addition to careful initialization choices, the results
of [17] suggest that carefully tuned first-order momentum
methods are important to training deep networks. Conse-
quently, we experimented with both classical SGD with mo-
mentum and AdaGrad to train the deep 8-layer network. [4]

Classical SGD with momentum accelerates directions of
low-curvature by building velocity in directions with a con-
sistent gradient signal. This allows the learning process to
avoid the problem of vanishing gradients and reach a better
local optima. Given the objective f(6), the update formula
is

Vt41 = UVt — va(et) (D
Orr1 = 0 + v ()

The momentum parameter p was set to the 0.9 during train-
ing.

For comparison, we also trained several deep networks
with Adagrad. Adagrad is an adaptive, per-parameter gra-
dient descent method that attempts to “find the needle in
the haystack” to make effective parameter updates to sparse
features. [4] Consequently, hyperparameter optimization is
not as important since the algorithm is more influenced by
historical gradients than the learning rate.The update for-
mula is given by

t
Guii= Y VIO, 3)

t'=1

Oi1 = 0, — G,V f(6,))

In both cases, the learning rate was initialized to n =
le — 3 and reduced by a factor of 10 every 10 epochs un-
til convergence. For the final, top-performing model, after
convergence, the learning rate was reduced to 5e — 6 and
allowed to train for another 5 epochs with lower regulariza-
tion. This fine-tuning procedure improved accuracy 1-2%.

4.3. Environment

Time and computational resources are by far the large
biggest bottlenecks to successfully training CNN’s. To
speed up this process, all of our CNN models were imple-
mented and tuned using Caffe, an open-source library for
convolutional neural networks. [7] All of the training took
place on a shared computer cluster using NVIDIA GTX 480
GPU’s. This set-up achieved a speed-up of over 20x from
the CS231n CNN implementation, allowing for faster de-
velopment times.

Even with this set-up, computational resources proved to
be a barrier to high performance. In particular, the limited
memory of the GPU restricted model size and sharing the
GPU with other users often restricted throughput and lim-
ited the number of possible training epochs.

It is likely that access to more powerful computing re-
sources and a larger computational budget would immedi-
ately yield an decrease in test set error with larger models,
more epochs of training and better cross validation.

5. Preventing Overfitting

Most image classification tasks contain significantly
more images per class than the Tiny Imagenet challenge.
For example, the CIFAR-10 data set contains more than
5,000 images for each of the ten classes compared to the 600
for each of the 200 Tiny Imagenet classes. The complexity
of the various classes demands a large model capable of rich
feature representation. However, the small number of train-
ing examples means that large models are prone to badly
overfitting the data. In this section, we detail several tech-
niques used to overcome these obstacles.

5.1. Data Augmentation

One of the easiest ways to prevent overfitting on an im-
age dataset is data augmentation, whereby the dataset is ar-
tificially enlarged by using class-preserving transformations
of the original images.

The first augmentation we used was taking horizontal
translations and reflections of each image. We accom-
plished this by taking 10 random crops of size 56x56 from
each 64x64 image and including it’s horizontal reflection.
We also changed the tint (adding a constant to each RGB
channel) and the contrast (multiplying a constant to each
pixel) of each image. Additionally, we added a random
Gaussian noise with mean 0 and standard deviation 1 to
each image.

We notice that all of these image augmentations should
not change the class of the image, but changes the pixel val-
ues (and their relative relationships) dramatically and are
essentially different images to the neural network. This al-
lows us to artificially generate more data, although clearly
these images are highly correlated with the originals. The

effect of these transformations is to increase generalization
by making the model more robust.

For each image we add about 20 additional images to the
dataset and expand the number of images we use to a total
of 2 million.

5.2. Model Regularization

L2-regularization is commonly used in machine learn-
ing because it encourages smooth, diffuse weights and in-
creases generalization of the model. In effect, regulariza-
tion can be viewed as enforcing a Gaussian prior over the
weights the model. The amount we regularize is determined
by the regularization constant, \. Larger values of A corre-
spond to stronger regularization, which makes overfitting
more difficult, but limits model capacity. We initially used
a value of A = 1 - 1073, but upon realizing we were regu-
larizing too strongly, we also experimented with values of
A=1-10"%3-10"%*and A = 5-107%.

5.3. Fine-Tuning

Given our large 8 layer convolutional neural network,
with a data set of roughly 2 million images after augmenta-
tion, we determined it was not possible to cross validate the
hyperparameters of our model while training from scratch.
In order work around our limited computational capabili-
ties, we trained 3 models from scratch using different learn-
ing rates and regularization constants for 40,000 iterations.
We then looked at our loss and training/validation errors to
determine new hyperparameter values. Each time we tried
new values, we would continue training on a snapshot of the
model that had already trained for 40,000 iterations. We be-
lieve that the early iterations only trained the basic features
such as edges and colors and would successfully train under
a wide range of hyperparameter values.

5.4. Model Ensembles

Model ensembling is a method of generating multiple
fully trained CNNs and combining them all to obtain a ag-
gregated prediction. Specifically, we run each test image
through each of our predictive models and obtain its class
probabilities and average them over each model. Model
ensembles have been shown to reduce the testing errors of
convolutional neural networks [8].

We did an ensemble over three models trained from
scratch with different weight initializations. We can imag-
ine that because these models are trained with different ini-
tializations and hyperparameters, the predictions it has at
the end will be completely different from another model.
One model might do well on certain classes while another
model might do well on others. By combining these mod-
els, the ensembled model will do well on the classes each of
the individuals models also do well on, and will generalize
better than any of the individual models.

In order to improve our accuracy even further, we wanted
to ensemble more models. However given time and com-
putation constraints, it was not possible to train 5 separate
models. Instead, we wondered if it was possible to en-
semble various snapshots (10,000 iterations apart) from the
same model as it trained. Our reasoning is that as a model
trains, it will search through many different local optimum.
Although each of these optimum may obtain the same vali-
dation error, the classes it succeeds in classifying correctly
may be completely different. For each of our 3 models, we
additionally ensembled three snapshots carefully chosen by
looking through the loss history and training/validation er-
rors to determine when the network was most likely in a
different local optimum.

5.5. Dropout

Another widely used technique increasing regularization
and preventing overfitting is Dropout [16]. Dropout sets
the output of each neuron to zero with a certain probability,
p. At test time we use all of the neurons but multiply the
results by p. The majority of the parameters in the convolu-
tional network are in the fully-connected layers, so in all of
our models, dropout is ony applied to the fully-connected
layers, and the early convolutional layers are not changed.

Dropout complements other regularization techniques
such as L1, L2 and maxnorm. However the downside of
dropout is that the network trains much more slowly, be-
cause it will roughly take 1/p more iterations to train the
entire network. We experimented with different values of
p for values p = 0,0.3,0.5,0.7, but found that the default
value of p = 0.5, as mentioned in [16] was the most effec-
tive.

6. Experiments

Name Val | Test
Shallow Model 82.5 | 83.1
5 Layer CNN 77.6 | 77.8
8 Layer CNN 674 | 67.3

8 Layer CNN (Dropout, A = le —4) | 63.6 | 63.3
8 Layer CNN (Dropout, A = 3e —4) | 59.5 | 60.0
8 Layer CNN (Dropout, A = 5e¢ — 4) | 58.0 | 58.2
3 8-Layer CNNs Ensemble 56.9 | 56.7

6.1. Results

We see that the shallow model and the 5 layer CNN has
significantly higher validation error, despite light parameter
tuning and training over many epochs. This shows that the
shallow models simply do not have enough parameters to
fit the data. Furthermore, we did experimentation with the
shallow networks on different filter sizes ranging from 3,5
and 7. We found that stacking 3x3 filters indeed does better
than using a single larger filter. As a result, we have many

layers of 3x3 filters in our 8 layer model. We also experi-
mented with the number of filters per layer. We generally
found that the larger the number of filters we used, the bet-
ter the model performed, because we increased the number
of parameters being trained on. However, because of com-
putation limitations, we chose to use 128 filters for our final
model.

We also see that the 8 layer CNN without dropout does
about 4 percent worse than the ones with dropout. For each
of the other 8 layer models in the table above, we trained
with a dropout probability of 0.5, a learning rate ranging
from 11073 to 1 - 10~* and various regularization param-
eters, A\ as seen in the table. Each model listed is without
ensemble except for the last entry. We found that ensem-
bling three snapshots of each model, dropped the test error
by about 1 percent. The overall ensemble of all 9 models (3
models with 3 snapshots each) dropped our test error by an
additional 1-2 percent.

We also notice that all of our models listed have near
identical validation error and test error. This means that
each of our models generalize extremely well.

7. Discussion

As we were training the 8 layer CNN models, we no-
ticed that with a A = 1 - 1072 the training and validation
errors were only differing by about 5 percent over 40,000
iterations. This means that our model was too heavily reg-
ularized so on top of the 40,000 snapshot, we trained an
additional 20,000-40,000 iterations with A = 1 - 10’4, 3
10*,5 - 10~*. However even with a lower regularization
constant, the training accuracy was still only around 45 per-
cent. We then decided to drop the regularization constant to
le — 8 to see if it will overfit further. Using this model, we
achieved a validation error of 45 percent without ensemble,
but did not generalize well and had a test error of about 60
percent. Even with very little regularization our model did
not overfit the data. This lead us to believe that our model
was still not large enough and has significant room for im-
provement, if we did the same techniques on a 12 layer net-
work. This optimistic assumption comes from the fact that
even AlexNet is a much larger capacity model that achieved
higher performance on a more challenging dataset.

However, the main problem with pursuing a larger model
is our limited computational power. Our current model has
over 400,000 parameters and took over 48 hours to fully
train. A much larger model might take days to fully train
and even longer to tune.

7.1. Error Analysis

A good way to tell whether our CNNs actually trained
well, is by visualizing the weights of the first layer. From
figure 4, we see that each 3x3 filter displays a clear image
of various blobs of color. These blobs determine the type of

Goldfish (84%): =

Espresso (84%):

Ly

Ladybug (76%):

Figure 5. Top 5 Classification Accuracies

features in our images that could help classify the classes.
If our networks did not train well, ie had too much noise
and was merely guessing, then the first layer visualizations
would be random noise as well.

We could also see how our CNN is distinguishing be-
tween classes by looking at the t-SNE embedding in Figure
2. A shallow model would most likely only differentiate
classes using colors, and have similarly colored classes next
to each other. However we do not see that much of a color
gradient in our t-SNE image. Instead, we see a lot of similar
shapes and textures grouped together, which further proves
our CNN actually trained well.

Another good way of analyzing our predictive models, is
by identifying what types of image classes it does well on
and what it does poorly on. From Figure 5 we see the top 5
classes our best model classifies and Figure 6 shows the top
5 classes it incorrectly classifies, and a few example images
for each class. We notice that the top correct classes (gold-
fish, espresso, dugong, butterfly and ladybug) all have a lot
of texture and similar telling colors between images of the
same class. For instance all goldfish and monarch butter-
fly are orange and have distinctive scales or wing patterns.
We also see that the orientation of these objects do not ef-
fect the CNNGs ability to predict the class, meaning it learns
more about the classes than just simple shapes.

However, for the classes we get wrong (Plunger, Pop bot-
tle, Bucket, Reel, and Syringe), we notice that some of the
images even a human cannot classify well. As a result, our
CNN gets almost none of these correct. Some of the diffi-
culties of these classes also stem from the fact that the color
of the object (pop bottle and bucket) has almost no effect
on the class. Also CNNs are known to perform poorly on
clear transparent objects with no textures like the syringe
and pop bottle. Our model also does extremely poorly on
objects that are long and thin like the reel and the plunger.

W

Figure 6. Bottom 5 Classification Accuracies

8. Conclusion and Future Work

The top performing ensemble of models achieved a test
set error of 56.7%, which was sufficient for 4th place on the
Tiny Imagenet leaderboard at the time of submission. The
experimentation and results confirmed much of the com-
mon intuition about the performance of CNNs on image
classification tasks. In particular, deep, high capacity mod-
els are required to handle to complexity inherent in natural
images. However, given limited amounts of training data,
strong regularization is necessary to prevents these models
from severely over-fitting.

An analysis of the Tiny Imagenet dataset was also fruit-
ful. As might be expected, many of the images were am-
biguous and many of the classes exhibited high variation
and noise. Further compounding these difficulties, the im-
ages are all initially size 64 x 64, which is low resolution
for a difficult classification task. In this sense, it is some-
what remarkable that a CNN is able to achieve nearly 45%
accuracy.

Given our limited time and resources for this project,
there is significant room for improvement in terms of our
test accuracy. Given more time, it is likely implementing
additional techniques that are not currently native to Caffe
would improve performance. For example, instead of just
using a ReLu in our model, implementing a parametrized
leaky ReLu that learns the best parameter o from our data.
This was shown in [5] to achieve excellent results.

Additionally, upon viewing more of the images from the
training set, we notice that a lot of the images even a hu-
man cannot identify correctly. This may be from heavy pix-
elation of the image or that the object being identified is
simply not even in the picture. In either case, if a human
cannot identify it, is it reasonable for a CNN to? Perhaps
it would be better to remove these ambiguous images from
the dataset. If our CNN only trains on standard easily iden-

tifiable images from a certain class, it may help our model
at least identify the low hanging fruit for the classes that we
obtain a near 0 percent accuracy. However, it is unclear how
this affects generalization.

References

[1] Y. Bengio and X. Glorot. Understanding the difficulty
of training deep feedforward neural networks. In Y. W.
Teh and M. Titterington, editors, Proc. of The Thir-
teenth International Conference on Artificial Intelli-
gence and Statistics (AISTATS’10), pages 249-256,
2010.

[2] Dalal, N.; Triggs, B., "Histograms of oriented gradi-
ents for human detection,” Computer Vision and Pat-
tern Recognition, 2005. CVPR 2005. IEEE Computer
Society Conference on , vol.1, no., pp.886,893 vol. 1,
25-25 June 2005

[3] Jia Deng; Wei Dong; Socher, R.; Li-Jia Li; Kai Li; Li
Fei-Fei, "ImageNet: A large-scale hierarchical image
database,” Computer Vision and Pattern Recognition,
2009. CVPR 2009. IEEE Conference on , vol., no.,
pp.248,255, 20-25 June 2009

[4] John Duchi, Elad Hazan, and Yoram Singer. 2011.
Adaptive subgradient methods for online learning and
stochastic optimization. JMLR, 12.

[5] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and
Jian Sun. Delving deep into rectifiers: Surpassing
human-level performance on imagenet classification.
arXiv:1502.01852, 2015

[6] G.E. Hinton, N. Srivastava, A. Krizhevsky, 1.
Sutskever, and R.R. Salakhutdinov. Improving neural
networks by preventing co-adaptation of feature de-
tectors. arXiv preprint arXiv:1207.0580, 2012.

[71 Y. Jia, Caffe: An open source convolu-
tional architecture for fast feature embedding,
http://caffe.berkeleyvision. org/, 2013.

[8] A. Krizhevsky, I. Sutskever, and G. E. Hinton, Im-
ageNet classification with deep convolutional neural
networks, in NIPS, 2012, pp. 11061114.

[9] Y. LeCun, B. Boser, J. S. Denker, D. Henderson, R.
E. Howard, W. Hubbard, and L. D. Jackel, Backprop-
agation applied to handwritten zip code recognition,
Neural Computation, vol. 1, no. 4, pp. 541551, 1989.

[10] D. G. Lowe. Distinctive image features from scale-
invariant keypoints. IICV, 60(2):91110, 2004.

(11]

(12]

(13]

(14]

(15]

(16]

(17]

(18]

(19]

L.J.P. van der Maaten and G.E. Hinton. Visualizing
High-Dimensional Data Using t-SNE. Journal of Ma-
chine Learning Research 9(Nov):2579-2605, 2008.

V. Nair and G. E. Hinton. Rectified linear units im-
prove restricted boltzmann machines. In Proc. 27th In-
ternational Conference on Machine Learning, 2010.

F. Perronnin, Z. Akata, Z. Harchaoui, and C. Schmid,
Towards good practice in large-scale learning for
image classification, in Proc. CVPR, 2012, pp.
34823489.

A. Razavian, H. Azizpour, J. Sullivan, and S. Carls-
son, CNN Features off-the-shelf: an Astounding
Baseline for Recognition, CoRR, vol. abs/1403.6382,
2014.

Olga Russakovsky, Jia Deng, Hao Su, Jonathan
Krause, Sanjeev Satheesh, Sean Ma, Zhiheng Huang,
Andrej Karpathy, Aditya Khosla, Michael Bern-
stein, Alexander C. Berg and Li Fei-Fei. Ima-
geNet Large Scale Visual Recognition Challenge.
arXiv:1409.0575, 2014.

Srivastava et al, Dropout: A Simple Way to Prevent
Neural Networks from, Journal of Machine Learning
Research, 2014 Overfitting,

Ilya Sutskever, James Martens, George E. Dahl, and
Geoffrey E. Hinton. On the importance of initializa-
tion and momentum in deep learning. In Proceed-
ings of the 30th International Conference on Ma-
chine Learning, ICML 2013, Atlanta, GA, USA, 16-
21 June 2013, volume 28 of JMLR Proceedings, pages
11391147. JMLR.org, 2013.

Szegedy, Christian, Liu, Wei, Jia, Yangqing, Ser-
manet, Pierre, Reed, Scott, Anguelov, Dragomir,
Erhan, Dumitru, Vanhoucke, Vincent, and Rabi-
novich, Andrew. Going deeper with convolutions.
arXiv preprint arXiv:1409.4842, 2014.

Tiny Imagenet Challenge [Online]. Available:
https://tinyimagenet.herokuapp.com

