Application of Convolutional Neural Networks to the Tiny ImageNet Challenge

Alex Martinez
Stanford University
450 Serra Mall
alexm711@stanford

Abstract

Combining results from state of the art convolutional
neural networks, we train a network for image
classification on the Tiny ImageNet dataset. We
experiment with preprocessing the data by adding a
gradient channel to the data. Our model uses use dropout,
PReLUs, data augmentation, and model ensembles as
ways to introduce and integrate over noise that better
captures the space of input for each category. Using these
methods, we were able to achieve an accuracy of 25.5%
on the validation set. Although our results are
unimpressive, we learned a great deal through the process
of training the net and evaluating its (and our) errors, and
expect future uses of CNNs to be substantially demystified
by the experience.

1. Introduction

Although convolutional neural networks (CNNs) are
not new, it was not until recently that they became
computationally tractable and their efficacy gained
recognition in the field. In recent years, CNNs have
overtaken more traditional learning algorithms, including
non-convolutional neural nets and regression models, in
their capacity to achieve high accuracies at only the cost of
increased training time.

Though not perfectly well understood, three broad
themes have emerged as CNNs have gained popularity.
First is the importance of retaining and curating relevant
information in the training phase. Second is that deep
networks with slim layers (few parameters) enjoy
reasonable computation times while still yielding high
classification accuracies. The third is that, in light of the
vast space of possible inputs that correspond to just one
category in image classification, CNNs generally benefit
from the introduction of noise in training that is then
integrated over in testing. The addition helps to increase
the representativeness of each input image for its
respective category. Our approach for designing a CNN
was in keeping with these three trends, as is the format of
this paper.

Jacob Waggoner
Stanford University
450 Serra Mall
jacobw1@stanford.edu

To that end, our approach was a three-tiered one. First,
we attempted to extract the most relevant information
from each training image by using preprocessing filter
techniques and image flipping. To retain that information
throughout the training process, we attempted to make use
of state of the art advances from [1] and [2], PReLU and
fractional max pooling, with varying degrees of success.
Second, we designed a lightweight network architecture
that fit with our computational (and therefore monetary)
and memory constraints based on the results documented
in [5] and [7]. Finally, we attempted to implement the
advances made by [dropout reference], [ensemble
reference], and [Szegedy et al] in an effort to increase the
representativeness of the learned weights. These were,
respectively, dropout, model ensembles, and adversarial
examples.

2. Background / Relevant Work

Because the task of generic image classification is not a
new one, our model uses tools designed specifically for
the task and techniques that are informed primarily by the
wealth of research that already exists.

The single most important tool that we used was
Berkeley Vision and Learning Center’s “caffe.” It allowed
us to quickly and easily prototype architectures and
provided a suite of pre-built functions common to the
CNN community. These implementations spared us from
reinventing the wheel, and, in the case of PReLU, saved us
from hopelessly implementing a python variant of PReLU
within the Caffe architecture. Thankfully, a Caffe merge
completed on March 11th included an implementation of
PReLU.

Apart from those techniques that appear in
Convolutional Neural Networks course at Stanford [3]
(Dropout, ReLU, model ensembles), the inspiration behind
several of our techniques came from outside work. Our
use of a parametric parameter unit (PReLu) is inspired by
the rectifier network in [2], which achieved a top-5 error
0f 4.96%. The use of fractional pooling to mitigate the
destructiveness of downsampling (75% of your dataset is
lost with the standard 2:1 max-pooling) is suggested by

[1].

sedy, C., et. al.,
ent when performing
atic improvement
1l examples, which
_pplement the dataset

<Figure 1

Top: Original image
Bottom Left: Visualization of filters from first ConvNet
Bottom Right: Images after application of kernels (filters)
We ultimately sought to minimize classification error on
the testing set by training on the train set and performing
hyperparameter validations on the validation set. We used
Caffe running on a GPU to run and test the models. This
required careful selection of several critical features and
hyperparameters. The former list includes the network
architecture, learning rate decay schedule, method of
regularization, type of models to ensemble and their
method of voting, and the weight update scheme. The
latter includes the learning rate, regularization strength,
dropout probability, filter size and number for each layer,
batch size, number of epochs, and weight initialization.

3.2. Evaluation

cla Learning Rate le-2
' Dropout Probability 0.7
on Filter Sizes (5,3,3)
no: Filter Number (32, 32, 64, 128)
pr¢ Batch Size 150
be Epoch Number 15
sm

Weight Initialization le-2 / sqrt(fan_in)

POWer. 11 pait, wivil, Wiv lvaluies Wy wele oUW
successfully implement were limited in substantial part by
our computing resources.

It is, moreover, less clear that our additional image
preprocessing (above centering and scaling), such as
adding the gradient image, would be effective, so we
would need to compare test results on a small group with
and without the feature.

In the process of obtaining final results, we made most
use of the loss over and validation and training accuracies
over time. The latter indicated to us early on that we
needed stronger regularization. When we tested with
regularization between 0.001, 0.001, and 0.0001 and

AT [

L

) Figure 2
Left: Visualization of filters from third ConvNet
Right: Images after application of kernels (filters)

dropout probability 0.5, we saw trends as in Figure 3 part
b. This indicated the need to increase regularization. We
then tried a regularization of 0.05, 0.03, and 0.02. 0.02
performed the best, and its training/validation accuracies
are shown in Figure 3 part d and f. The latter indicates to
us the need to decrease our learning rate. That the loss so
sharply decreases as in Figure 3 part ¢ and then plateaus
suggests that our results could be improved by an increase
on the order of 10. Although we are confident in this
hypothesis, we unfortunately did not have time to validate
it.

One other measure we made some use of was the
visualization of filters after the first convolutional layer.
An example is shown in Figure 1, bottom left. Even after
changing our regularization to produce the aforementioned
closeness between the training and validation accuracies,
the filters are scattered and produce no clear patterns. This
suggests to us that our model could still benefit from
further tuning of regularization; it is possible that the
filters would benefit from greater run time, though this is
unlikely given the plateaus in Figure 3, d and f.

4. Technical Details

Here, we provide a brief overview of the features we
planned to implement, in the order we plan to address
them.

4.1. Network Architecture

Our final CNN architecture consists of the following:

(Conv3-32 >> Conv3-32 >> ReLu-32 >> Pool-32) >>

(Conv3-64 >> Conv3-64 >> ReLu-64 >> Pool-64) >>

(Conv3-256 >> Conv3-256 >> Convl-256 >> ReLu-256 >> Pool-256)
>> Affine-200 >> Dropout-200 >> Softmax-LogLoss

Our primary challenge when choosing CNN architecture
was balancing the computational (and correspondingly,
financial) cost with capacity and efficacy gains. Following
[3] and [7], we therefore attempted to design a network
that was as deep and robust as possible while working
within our constraints. We initially tested a 9, 7, and 5

Figure 3
Hyperparameters

layer network, but quickly found that even after
substantially scaling back the number of filters used at
each layer, our Terminal GPU instance did not have the
memory capacity to run networks of this size. We finally
found that we were able to successfully run to completion
with a three layer model. From there, we drew from [7] to
use sequential convolutional layers with filters of size 3x3,
and later in the network, an additional layer with filters of
size 1x1. These chained small layers, as Simonyan
suggests, serve to add nonlinearities to the model (e.g.,
increase its representational capacity) while maintaining a
relatively low number of parameters. We then followed
[4] in placing a dropout layer just before our fully
connected layer, and [3] in using only one fully connected
layer rather than the more traditional two, cognizant of the
fact that we would be trading a small amount of accuracy
for relatively large reductions in runtime).

Classification Set

ng%tggy(g@gog%&ggme nga_tgg)on to our dataset was

ﬂ_]_pp,e,d_]mages he reasan for this was two-fold First w
fi

umidnlmeﬂdmlo,any testing uhas Ishe addition of alternative

4l a1}
a élllblllall\)llb Ulu lll,l.lb k 1 } LU llll})lUVL« Uul lbbultb 11

restdt SecoRiPthisehsy)[3], whidhis(fes ddseubraeniyspong
cpntributes the most to gener| n[i9980n of learned features
Second, what little improvement we saw came at the cost
of a substantial increase in runtime. We did not find the
tradeoff to be worthwhile. These efforts are detailed
below:

Gradient Image: We added a fourth dimension to our
inputs, consisting of an approximation of the gradient of
the image intensity function, as computed by the Sobel
operator. Our hope was that it would allow the CNN to
focus on salient features, under the assumption that
regions of rapid gradient change generally contain
particularly useful information. Despite the lack of
literature on the subject, we were expecting the addition to
make the model more robust - although a CNN can
generate filters that approximate edge extraction, we
hypothesized that having a fourth layer already containing
that information might allow the net to devote fewer, but
more accurate, filters to the task. Unfortunately, we found
that this was not the case. Our validation accuracy was, in
fact, slightly poorer (probably owing to variation in
random initialization), which suggests to us that our CNN
performed edge detection sufficiently well without the
additional channel.

Mirror Image: We flip randomly selected images
horizontally. This technique’s impact on classification
accuracy was strongly validated in [3], and so we did no
comparison test to validate its efficacy ourselves.

Tinting and Contrast Modified Image: After
implementing this technique, we saw no improvement
over simply flipping the images that couldn’t be attributed

Classification Accuracy

B

9]

(IJ.

to variation in random initialization, and so chose to

exclude it to spare the computation
Adversarial Examples: As training runs

on the GPU,

we were able to process adversarial images (imperceptible
noise added to fool the network) and add them to our
image set. This technique is validated in [6].

We tried other methods to improve robustness such as
adding random croppings of the image (suggested in [3]),
modulating its histogram, and warping the image, but we

found improvement to be marginal.

4.3. Dropnout
Fo
9
foll]l gh| — train
weig L
6 sy
p, an . e
g, N
the s .
—
2 -
are d : .
= R
prob: o
(o] 2000 4000 6000 8000 10000 12000 14000 16000 18000
2n (1000 iterations
0.6
nist 0s i
ey
0.4
2 03 /_\7/
44.1 & %
g 02
g
Th 0.1
impl' 0.0
that 1 -0 10 2000 4000 6000 8000 10000 12000 14000 16000 18000
1000 iterations
18 :
16| — train
1uH — val
12
é 10
8}
6
4|
2 L 1 L L
] 2000 4000 6000 8000 10000
0.30 ; 1000 iterations

4000
1000 iterations

0 2000

6000

8000 10000

0 2000 4000 6000
0.18 . " 1000 iteration

8000 10000 12000

.. 012}

accurac

6000
1000 iterations

0 20‘00 40b0
Figure 3
Top (a-b): ReLLU, no Dropout
Center (c-d): ReLU, Dropout
Bottom (e-f): PReLU, Dropout

10000

8000 12000

where a; is determined on a per-channel basis at each
layer by application of the chain rule during back-
propagation followed by SGD + momentum, much like
the weights and biases. In [2], it was demonstrated to have
improved their results by nearly 1% over the previous
state of the art, with very little additional computational
cost or risk of overfitting because of the relatively small
number of parameters it adds to the model (one/channel at
each layer).

4.5. Fractional Pooling

It was recently demonstrated in [1] that max pooling too
drastically reduces the amount of information available to
be shared between layers that are separated by a pooling
layer. In response, he formulated a fractional pooling
method that reduces the amount of information in an
image by some number between one and four. The method
operates by applying max pooling to pseudorandomly
chosen pooling regions in an image. These regions P, ; are
determined by the equations:

where
fori=0 ... [output size]

These regions allow the network to learn some translation
and elastic distortion without too drastically decreasing the
amount of information shared between layers.
Nonetheless, we expect to have to thoroughly tune our
regularization parameters when we add in fractional
pooling, as poor tuning has been reported to lead to easily
lead to underfitting or overfitting.

4.6. Model Ensembles

[3] indicated that training multiple models to vote on
the correct class for each image turning testing can
substantially improve performance. We plan to ultimately
train two models — one with a SVM linear classifier and
one with a Softmax classifier — several times with
different random weight initializations once our
hyperparameters have been tuned.

We will then either average the output scores to
determine the predicted class, or attempt to compare the
models’ confidence in their predictions and weight their
vote appropriately. We are not yet certain that this latter
voting procedure would be theoretically well-grounded,
however, and so it may not appear in our final model.

5. Results

As shown in the table below, after a week of training, our
best validation accuracy was 25.5% after 12,000 iterations
(2.2 epochs). Our best training accuracy was a
corresponding 30.5%. This model was not able to utilize

adversarial examples or fractional pooling, as we suggest
below.

6. Error Analysis

Our failure in ultimately implementing adversarial
examples stems from the added computation making
training within our given time frame infeasible. As
demonstrated in assignment [3], the generation of
adversarial examples with negligible visual deformations
takes on the order of seconds in a naive implementation.
Given the number of image we needed to operate on a
naive implementation running on the gpu was unfeasible.
It was suggested in [6] that the generation of adversarial
examples occur on the cpu, and the output feed back into
the pool of training examples that the CNN utilizes while
training on the gpu. However, implementing this
parallelization in caffe proved unfeasible for us as well.

QOur failure in implementing fractional pooling stems from

the added runtime as well.

Adding a fourth channel to our input data required a
significant alteration of the caffe architecture that
ultimately was unrealized.

The following two graphs compare models running with
ReLU and PReLU. While the PReLU model demonstrates
lower classification accuracy in both validation and
training accuracies this is to be expected, as the variable
negative slope in PReLU makes the model take longer to
train, in the same way that dropout allows for a more
robust model at the expense of a longer training period. In
both graphs we can see that the learning rate parameter
selected is too high, as there is little gap between training
and validation. While a large gap between training and
validation accuracies suggests too low a learning rate, a
lack of gap suggests that the training accuracy is being
compromised significantly, and the validation accuracy
moderately.

7. Discussion

Compared to other Tiny Imagenet convolutional neural
networks featured in this competition, we can see there’s
room for improvement.

Computational power was a major concern in training a
convnet. There’s little we can do to build a larger, more
robust architecture if our machine cannot handle it or we
cannot afford the cost of running Terminal for extended
periods of time.

Another bottleneck was simply the amount of time we
had to train. Both training time (number of epochs) and
architecture size were constrained by the amount of time
we had to build our network.

Additionally, fine-tuning was hindered by the time
constraint. A suboptimal hyperparameter selection can
compromise performance, however the time it takes in
finding the optimal combination of just learning-rate,
regularization, and number of filters at each layer, let
alone other hyperparameters such as the weight
initializations (Gaussian variance and bias) at each layer
scales with the size of the architecture.

Finally, and perhaps most significantly, we were
hindered substantially by Terminal.com. There were
periods of time we had no access to our accounts and had
to re-write already written code. We ultimately were not
able to afford the expense, financially, that was required to
run for long periods of time, and we unable to access the
GPU instances nearer to the end of the project timeline for
lack of available instances. In the future, we would prefer
a more stable development platform.

For the reasons above, we were prevented from
producing predictions for the testing set — Having left over
12 hours to compute the predictions, we were blocked
from accessing the files need to compute a prediction until
shortly before the deadline, which did not leave us time to
run the prediction script to completion. We hope to be able
to email it shortly.

References

[1] Graham, B. (n.d.). Fractional Max-Pooling. /CLR
2015 - Under Review, ArXiv:1412.6071, 1-8.
Retrieved February 16, 2015, from ArXiv.

[2] He, K., Zhang, X., Ren, S., & Sun, J. (2015). Delving
Deep into Rectifiers: Surpassing Human-Level
Performance on ImageNet
Classification. Microsoft, ArXiv:1502.01852, 1-11.
Retrieved February 9, 2015, from ArXiv.

[3] Karpathy, A. (Director) (2015, January 1).
Introduction to Convolutional Neural
Networks. Course Lecture. Lecture conducted from
Stanford University, Stanford.

[4] Krizhevsky, A., Sutskever, 1., & Hinton, G. (2012).
ImageNet Classification with Deep Convolutional
Neural Networks. Neural Information Processing
Systems, 1-9. Retrieved February 16, 2015,
fromhttp://papers.nips.cc/paper/4824-imagenet-
classification-with-deep-convolutional-neural-

networks.pdf

[5] Lin, M., Chen, Q., & Yan, S. (2014). Network in
Network. ArXiv, 1-10. Retrieved February 16, 2015,
from ArXiv.

(6]

(8]

[9]

Rother, C., Kolmogorov, V., & Blake, A. (2004).
"GrabCut" ACM Transactions on Graphics,309-309.
Retrieved February 16, 2015,

from http://www.wisdom.weizmann.ac.il/~vision/cour
ses/2006 2/papers/vid seg/grabcut sigeraph04.pdf

Simonyan, K., & Zisserman, A. (2014). Very Deep
Convolutional Networks for Large-Scale Image
Recognition. /CLR 2015, 1-13. Retrieved February
16, 2015, from ArXiv.

Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever,
I., & Salakhutdinov, R. (2014). Dropout: A Simple
Way to Prevent Neural Networks from

Overfitting. Journal of Machine Learning

Research, 15,1929-1958. Retrieved February 16,
2015,

from http://jmlr.org/papers/volumel 5/srivastaval4a/sr

ivastaval4a.pdf

Jia, Y. and Shelhamer, E. and Donahue, J. and
Karayev, S. and Long, J. and Girshick, R. and
Guadarrama, S. and Darrell, T. (2014). Caffe:
Convolutional Architecture for Fast Feature
Embedding. Jia2014caffe, arXiv:1408.5093.
Retrieved February 9, 2015, from ArXiv.

http://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pd
http://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pd
http://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pd
http://www.wisdom.weizmann.ac.il/~vision/courses/2006_2/papers/vid_seg/grabcut_siggraph04.pd
http://www.wisdom.weizmann.ac.il/~vision/courses/2006_2/papers/vid_seg/grabcut_siggraph04.pd
http://jmlr.org/papers/volume15/srivastava14a/srivastava14a.pd
http://jmlr.org/papers/volume15/srivastava14a/srivastava14a.pd

