
S-NN: Stacked Neural Networks

Milad Mohammadi
Stanford University
milad@stanford.edu

Subhasis Das
Stanford University

subhasis@stanford.edu

Abstract

It has been proven that transfer learning provides an
easy way to achieve state-of-the-art accuracies on several
vision tasks by training a simple classifier on top of features
obtained from pre-trained neural networks.

The goal of this project is to generate better features
for transfer learning from multiple publicly available pre-
trained neural networks. To this end, we propose a novel
architecture called Stacked Neural Networks which lever-
ages the fast training time of transfer learning while simul-
taneously being much more accurate. We show that us-
ing a stacked NN architecture can result in up to 8% im-
provements in accuracy over state-of-the-art techniques us-
ing only one pre-trained network for transfer learning.

A second aim of this project is to make network fine-
tuning retain the generalizability of the base network to un-
seen tasks. To this end, we propose a new technique called
“joint finetuning” that is able to give accuracies compa-
rable to finetuning the same network individually over two
datasets. We also show that a jointly finetuned network gen-
eralizes better to unseen tasks when compared to a network
finetuned over a single task.

1. Introduction
Transfer learning is a general framework in which one

trains a pre-trained neural network to a new task on which
the network was not trained. Amazingly, Razavian et
al. [14] have shown that transfer learning on a pre-trained
neural network can outperform traditional hand-tuned ap-
proaches in several tasks including coarse-grained detec-
tion, fine-grained detection and attribute detection. In their
work, Razavian et al. point out that “It’s all about the fea-
tures”.

Figure 1 depicts the trade off between obtaining high
classification accuracy for deep networks highly trained for
a particular dataset for over a long time period and trans-
fer learning to produce decent classification accuracy over
a short training time period. In order to reach this target,
this work is to present a novel method for leveraging higher

Stacked-NN

Generalization 
&

Training Speed

A
cc

u
ra

cy

Places Dataset
on Places Net

Non-Places Dataset
on Places Net

Figure 1: The conceptual state of the deep learning space
presented as a trade off between time consuming and task-
specific neural network training targeted specifically to spe-
cific datasets versus fast neural network training through
transfer learning to obtain reasonable performance from rel-
atively generalizable neural networks. The goal of this pa-
per is to evaluate the performance of a network architec-
ture named Stacked Neural Networks (S-NN) to leverage the
fast training speed of transfer learning while considerably
increasing the accuracy of transfer learning by generating
better features.

generalization accuracy from transfer learning. Our aim is
to find better features for vision datasets that are highly gen-
eralizable and fast to train.

Since Razavian et al.’s work, several state-of-the-art pre-
trained neural networks have been made publicly available
at Caffe Model Zoo [1]. These include networks such
as VGG [15], GoogLeNet [5], Places [19], and NIN [8].
Our initial studies suggested that these networks have non-
overlapping mis-classification behavior. This observation
leads us to believe that by combining the combination of
these networks can improve the classification by compen-
sating for the shortcoming of other networks. What is valu-
able to understand is whether there is a single combination
of neural networks that is generalizable for all datasets or
different combination of networks provide optimal results

1



for different datasets.
Before going any further, a short note about terminol-

ogy. In this paper, we use the term transfer learning to
mean training a SVM classifier on top of features extracted
from pre-trained networks without changing the networks.
On the other hand, by fine-tuning we mean changing all the
layers of a network to better fit the given task.

Ensembling has been recognized as a simple way to
boost the performance in a vision task by averaging the
scores of multiple networks together. However, in some
tasks such as Image-to-Sentence retrieval [9], a set of fea-
tures is desirable instead of a score over some set of pre-
defined classes. Thus, we try to tackle the problem of gener-
ating better features rather than simply improving the trans-
fer learning accuracy by ensembling.

In this work, we show that a combination of several net-
work features by a novel technique which we call stacking
offers better accuracy in many vision tasks. We also eval-
uate various combinations of networks to find which net-
work combinations offer the best accuracy across the dif-
ferent datasets and whether there is a single combination
of networks that offers substantially higher accuracy across
the board.

We also evaluate the effect of using an ensemble of
stacked networks rather than a single stacked network in
order to boost the performance of transfer learning even fur-
ther. We observe that ensembling can provide a substantial
boost in performance over and above that offered by stack-
ing.

We also examine the effects of fine-tuning on the gener-
alizability of the features output by a network. We observe a
significant drop in generalization performance of a network
once it has been fine-tuned to one specific task. However,
we show that joint finetuning of a single network on two dif-
ferent tasks can actually create a network that has accuracies
close to the individually fine-tuned networks. We also show
that the features of a jointly fine-tuned network have signif-
icantly higher generalizability on unseen tasks than a fine-
tuned network for a single task. However, we observe that
this jointly fine-tuned network still significantly underper-
forms the baseline of using the pre-trained network features
only. Section 6 details our experiments in this area.

2. Neural Networks Set
The network architectures and features used for this

study are outlined below.
VGG 16-layers and 19-layers (VGG16, VGG19): This

is an architecture proposed by Simonyan et al. [15] which
uses a very deep network (16 and 19 layers respectively)
with smaller convolution filters of 3×3 size to obtain state-
of-the-art accuracies on the ImageNet 2014 Challenge. We
use the fc7 layer of the VGG network as the features layer.

GoogLeNet: This is an architecture used by Szegedy et

al. [16], which uses several “Inception” modules to create
a deeper network with 22 layers while having much fewer
parameters than other networks such as VGG and AlexNet.
We use pool5/5x5 s1 layer of GoogLeNet as the fea-
tures layer.

Places: This is a network created by Zhou et al. [19].
It has the same architecture as AlexNet [7] but trained on
the Places dataset instead of ImageNet to enable better per-
formance in scene-centric tasks. We use the fc7 layer of
Places as the features layer.

Network In Network (NIN): This is a network architec-
ture used by Lin et al. [8] which uses neural networks as the
layer transfer function instead of a convolution followed by
a non-linearity. We use the pool4 layer as the features.

3. Datasets
Below, we describe the attributes of each of the datasets

used for our study evaluation.
Caltech-UCSD Birds 200-2011 [17]: This is a dataset

of 200 different species of birds. The dataset consists of
11,788 images.

Caltech256 [4]: This is a dataset of 256 object cate-
gories containing 30,607 images. The dataset is collected
from Google images.

Food-101 [2]: This is a dataset of 101 distinct food cat-
egories with 1,000 foods per category.

LISA Traffic Sign Dataset [10]: This dataset contains
7,855 annotations on 6,610 video frames captured on US
roads. Each image is labeled with the traffic signs visible
on the images as well as the location of the sign. It covers
47 of the US traffic signs.

MIT scene [13]: This is an indoor scene dataset with
15,620 images with 67 categories each of which containing
at least 100 images.

Oxford flowers [12]: This is a collection of 102 groups
of flowers each with 40 to to 256 flowers.

4. Methodology
In this section, we formally define Stacked Neural Net-

works and discuss the studies we conducted to construct a
novel deep learning framework for improving the state-of-
the-art prediction accuracy of deep neural networks (NN).

4.1. Feature Stacking

Stacked Neural Networks (S-NN) is defined as a com-
bination of publicly available neural network architectures
whose features are extracted at an intermediate layer of the
network, and then concatenated together to form a larger
feature set. Figure 2 illustrates this idea in detail. The con-
catenated feature vector is used to train a classifier layer
which consists of an optional dropout layer, an affine layer
and an SVM loss function. The impact of the dropout

2



S
ta

ck
ed

 F
ea

tu
re

s

F
ea

tu
re

s

D
ro

p
ou

t

A
ff

in
e

SVM Loss
 Function

NIN

Places

GoogLeNet

VGG16

VGG19

F
ea

tu
re

s
F

ea
tu

re
s

F
ea

tu
re

s
F

ea
tu

re
s

INPUT
IMAGE

S-NN

Figure 2: A stack of five publicly available neural network
architectures. The features generated from each network
are combined into a unified feature vector. This vector is
used to classify the dropout and affine layers. We define the
combination of multiple networks a Stacked Neural Net-
work (S-NN)

layer will be discussed in detail in Section 5. While Fig-
ure 2 shows all five convolutional neural networks (CNN)
as members of the S-NN, any combination of these CNN’s
is also considered a S-NN. For instance, {GoogLeNet,
VGG16} and {NIN, Places, VGG19} are examples of a 2-
network and 3-network S-NN’s. We will evaluate the effect
of different network combinations in Section 5 showing that
S-NN’s deliver higher classification accuracy than single-
network structures.

4.2. Ensemble of S-NN’s

It is shown in the literature [3] that an ensemble of
multiple independently trained networks can improve the
prediction accuracy by reducing the classification error
rate. Each combination of S-NN’s produces a new fea-
ture vector and a new set of scores. To further improve
the classification accuracy, we studied the effect the en-
semble mean of scores on the final network. Figure 3
shows a number of S-NN’s whose scores are combined into
an ensemble score. While any arbitrary group of S-NN’s
may be used to generate an ensemble score, we choose to
compute this score by stacking a S-NN with all its net-
work combination subsets. For example, given a S-NN
containing three networks {NIN, VGG19, GoogLeNet},
we take the ensemble score of all its network subsets:
{NIN}, {VGG19}, {GoogLeNet}, {NIN, VGG19}, {NIN,
GoogLeNet}, {VGG19, GoogLeNet}, {NIN, VGG19},
{NIN, VGG19, GoogLeNet}. This method of forming en-

Ensemble
Scores

S
co

re
s

S-NN 1

S-NN 2

S-NN 3

S-NN N

S
co

re
s

S
co

re
s

S
co

re
s

INPUT
IMAGE

Figure 3: Scores generated from a group of S-NN’s each
containing a subset of the networks illustrated in Figure 2
are combined to generate the mean score of the ensemble.

sembles allows us to compare the performance of each S-
NN combination against other S-NN’s as discussed in detail
in Section 5, Figure 5.

5. Results Discussion
In this section we analyze the impact of S-NN and en-

semble of S-NN’s. In doing so, we answer two key ques-
tions in this section:

1. What is the impact of multiple networks on perfor-
mance? In other words, does more networks neces-
sarily mean more performance?

2. What is the most generalizable S-NN architecture if
we were to pick a combination of these five NN’s?

Figure 4 is aimed to answer question (1). It shows our
best experimental results on all combinations of 1, 2, 3, 5
S-NN’s for all datasets. Each S-NN combination was evalu-
ated using 10’s different hyperparameter sweeps (i.e. learn-
ing rate, regularization factor, number of epochs). The list
of hyperparamters used in this work is included in Table 1.
We evaluated the validation accuracy for single-network, 2-
network, 3-network, and 5-network stack combinations. All
2-network experiments do not use the dropout layer while
all 3-network experiments use the dropout layer (see Fig-
ure 2); we discovered dropout becomes an important train-
ing element once the number of networks is larger than two.
For the case of five networks, however, we experimented the
network performance with and without the dropout layer.
Figure 4 points out for most networks, the case of 5 S-NN

3



mitscene food101 lisa caltech256 birds200 flowers
Datasets

0.0

0.2

0.4

0.6

0.8

1.0

A
cc

u
ra

cy

1-net 2-net 3-net 5-net

Figure 4: Best performing S-NN’s over six different
datasets and many several different hyperparameters. S-
NN’s with 1, 2, 3, and 5 network are included. For each
number of networks, all their combinations are evaluated.

is favorable. It also indicates that the case of 2 S-NN is
strongly competitive with 5 S-NN.

Learning Rate 1e-2, 5e-2, 1e-3, 2e-3
Regularization 0.01, 0.1, 1, 10

Number of Epochs 300, 400
Learning Rate Decay 0.98

Table 1: Hyperparameters used to profile the classification
accuracy of all network combinations used for S-NN ex-
periments. The best classification accuracy obtained from
all these hyperparameter combinations is reported as a data
point in Figure 4.

Figure 5 is aimed to answer question (2). It shows all
possible network combinations and represents their accu-
racy degradation compared to the best S-NN combination,
which is 5-networks, for all datasets. This Figure indicates
for a single-network case, GoogLeNet is the most gener-
alizable CNN as it has the least mean and standard de-
viation in accuracy degradation. For the 2-network case,
VGG16+GoogLeNet make the best network. This is a
sensible choice because (1) the two network are among
the best publicly available networks, and (2) they are
constructed based on two different architectural assump-
tions, making them relatively uncorrelated from the mis-
classification behavior standpoint. For the 3-network case,
VGG16+GoogLeNet+Places is the best S-NN. For the 4-
network case, VGG16+VGG19+GoogLeNet+Places form
the best classification choice indicating the poor general-
ization ability of the NIN CNN.

Notice the case with 5 networks has relatively negligible
accuracy superiority relative to the 2-network case, making
two strong CNN’s like GoogLeNet and VGG16 quite suffi-
cient.

P N
V

1
V

2 G

N
+

P
V

1
+

V
2

V
2
+

N
V

1
+

N
N

+
G

V
2
+

P
V

1
+

P
G

+
P

V
1
+

G
V

2
+

G

V
1
+

V
2
+

P
V

1
+

V
2
+

N
V

2
+

N
+

P
V

1
+

N
+

P
N

+
G

+
P

V
1
+

V
2
+

G
V

2
+

N
+

G
V

1
+

N
+

G
V

1
+

G
+

P
V

2
+

G
+

P

V
1
+

V
2
+

N
+

P
V

1
+

V
2
+

N
+

G
V

1
+

N
+

G
+

P
V

2
+

N
+

G
+

P
V

1
+

V
2
+

G
+

P

V
1
+

V
2
+

N
+

G
+

P

Network Combination

0.4

0.3

0.2

0.1

0.0

A
cc

u
ra

cy
 D

e
g
ra

d
a
ti

o
n

mitscene

food-101

caltech256

birds200

flowers

Figure 5: The horizontal axis shows all possible S-NN ar-
chitectures. The vertical axis shows the ensemble accuracy
of each architecture with all combinations of its subsets.
For example, the subsets of {NIN, VGG16} used to com-
pute the ensemble accuracy are {NIN, VGG16}, {VGG16},
and {NIN}. The network ensembles that deliver the highest
generalization accuracy in the 1, 2, 3, and 4-network cases
are highlighted in gray.

Figure 6 focuses on extracting the best results ob-
tained on each dataset under different experimental settings.
It compares the single-network case with S-NN without
dropout and S-NN with dropout training. It further shows
the best accuracies for the single-network ensembles as well
as the Stacked Ensemble model shown earlier. The single-
network ensemble refers to taking the mean of scores of
individual networks in order to construct the final score. In-
terestingly enough, these results are more superior than the
previous S-NN approach without score ensembles. To fur-
ther improve this performance, the Stack Ensemble mode
also includes the scores of S-NN architectures evaluated in
Figure 4 in order to generate even more accurate classifica-
tions.

The black lines in Figure 6 show the state-of-the-art ac-
curacies in each given dataset when data augmentation is
applied and the dashed black lines show the state-of-the-
art accuracies without data augmentation [11, 2, 17, 4, 13].
Authors have not been able to identify any publications ex-
plicitly showing the state-of-the-art classification results for
the LISA dataset. While we have not performed data aug-
mentation as part of this study, we believe in doing so, we
can surpass the state-of-the-art performance results even on
datasets our results is below the solid line at the moment.

Figure 7 shows the confusion matrices for the standalone
classification performance of the GoogLeNet, Places, and
VGG16 CNN’s when running the MIT Scene dataset. To
avoid clutter, this Figure illustrates 11 classes. Here, we
draw a number of interesting insights from these results
when comparing similar confusion cells in different matri-
ces:

4



mitscene food-101 lisa caltech256birds200 flowers
Datasets

0.0

0.2

0.4

0.6

0.8

1.0

A
cc

u
ra

cy

Single Net

Stacking w/o Dropout

Stacking w/ Dropout

Single Net Ensemble

Stack Ensemble

Figure 6: Best performance results generated across all tests
done. The dashed line represent the state-of-the-art without
data augmentation and the solid lines represent the state-of-
the-art with data augmentation.

• The BH misclassification happens 104 times in
VGG16 and 96 times in GoogLeNet while only 32
times in Places. The combined S-NN only has 39 mis-
classifications. This shows the error correction power
networks features in compensating for each other’s
weakness. This effect can also be observed in DI
where the misclassification for the S-NN is zero while
GoogLeNet misclassifies 8 images in this cell.

• The IE misclassification happens 8 times in
GoogLeNet and 0 times in Places and VGG16.
Despite the presence of VGG16 and Places network,
the S-NN confuses 5 images to this cell. This shows
despite the presence of other networks to completely
eliminate this type of image misclassification in
S-NN, the score from GoogLeNet dominates the
overall outcome more often. In Section 7.2, a potential
solution to this problem is discussed.

• The FB misclassification never happens to single-net
cases. However, the stack of features shows 1 misclas-
sification in this cell. While a negligible misclassifi-
cation case, this shows the stack of NN features can
have some adversarial effect in the final outcome. In
Section 7.2, a potential solution to this problem is dis-
cussed.

6. Joint Training of Multiple Tasks
As part of this work, we also looked at how the general-

ization of network features suffers as a result of finetuning a
network on a given task. To perform these experiments, we
considered three tasks from different domains: Food-101
(task A), MIT Scene (task B), and Caltech256 (task C). In

(a) GoogLeNet CNN (b) Places CNN

(c) VGG16 CNN
(d) VGG16+GoogLeNet+Places
CNN’s

Figure 7: Confusion matrix of the MIT Scene dataset run
on three independent CNN’s along with their S-NN model.
This dataset has 67 classes. To avoid clutter, these matrices
only consider 11 of these classes. The value in each cell
corresponds to the number of instances an image in actual
class X is classified as Y. The main diagonal represents cor-
rect classification.

all of these experiments, we used the VGG16 network. We
describe our experiments and observations below.

Recall from Section 1 that by fine-tuning we mean ac-
tually changing the network parameters, while by transfer
learning we mean only using an SVM layer on top of a pre-
trained network.

6.1. Generalization Loss by Fine-Tuning

In our first experiment, we investigated the generaliza-
tion loss by network finetuning and ways to avoid this prob-
lem.

To show loss of generalizability by fine-tuning, we
first fine-tuned VGG16 on task A to create the network
VGG16A, and independently on task B to create a network
VGG16B. Subsequently, we evaluated the transfer learning
accuracy of task B on VGG16A. We compared this with the
accuracy of VGG16B on task B. The results are summarized
in Table 2.

This comparison shows that indeed fine-tuning VGG16
on task A reduced the transfer-learning accuracy on task B
drastically (43.0% compared to 72.2%). Thus, an interest-
ing question is whether it is possible to fine-tune a single
network to give accuracies similar to the individually fine-
tuned networks on both the tasks A and B?

Our experiments show that the answer to this question is

5



CNN

Food 
101

(task A)

MIT 
Scene 

(task B)

A
ff

in
e

Softmax 
Loss

A
ff

in
e

Softmax 
Loss

Figure 8: One neural network trained on multiple tasks with
multiple classifier layers, one per task.

“Yes”. Below we describe the methodology for achieving
this result.

The network architecture is shown in Figure 8. We
trained a single network with the concatenation of multi-
ple dataset inputs in each minibatch. Each minibatch con-
sisted of 4 images, 2 of which were from task A and 2 from
task B. The output features from the network are then fed
into two independent linear classifier layers, one for each
of the tasks. The final loss is taken to be the sum of soft-
max losses from the two classifier layers. Let us denote this
jointly trained network by VGG16AB.

Table 2 shows the resulting accuracy from this approach.
It can be seen that the accuracy of VGG16AB on task
A (68.0%) is close to the accuracy of VGG16A (69.6%)
while the accuracy on task B (70.6%) is close to VGG16B
(72.2%). Thus, it can be inferred that it is indeed possible
to gain the best of both VGG16A and VGG16B in a single
network.

task A on VGG16A 69.6%
task B on VGG16B 72.2%
task B on VGG16A 43.0%

task A on VGG16AB 68.0%
task B on VGG16AB 70.6%

Table 2: Performance of task A and task B on VGG16A,
VGG16B, and VGG16AB

6.2. Generalization of Jointly-Tuned networks

In the previous section, we saw that jointly tuning a net-
work on two tasks can give accuracies comparable to indi-
vidual finetuning. We also saw that individual finetuning
destroys a lot of the generalization capabilities of the orig-
inal network. These two facts bring up the next question:
what is the generalization capability of a jointly tuned net-
work?

To answer this question, we took a third task C (Cal-
tech256 in our experiments), and evaluated the transfer
learning accuracy of task C over VGG16, VGG16A and
VGG16AB. The results are summarized in Table 3.

task C on VGG16 75.0%
task C on VGG16A 54.8%

task C on VGG16AB 61.3%

Table 3: Performance of task C on VGG16, VGG16A and
VGG16AB

It can be seen that, indeed, the generalization capabili-
ties of a jointly finetuned network are higher. Although the
jointly finetuned network still does not reach the transfer
learning capability of the baseline network alone, it does
succeed in mitigating a lot of the degradation coming from
individual finetuning. We suspect that the reason behind this
phenomenon is that the jointly-finetuned network is forced
to finetune towards more “general” properties of the tasks
rather than being extremely specific to one particular task.

From these two experiments, we can conclude that joint
finetuning is a promising direction to look into for finetun-
ing networks without losing their generalization capabili-
ties.

7. Future Direction
7.1. Parallel Training of Networks

As shown in [18], training neural networks at deeper
layers can improve the classification accuracy. While the
S-NN’s, explained in the previous sections, are targeted
toward agile training and high generalization accuracy, it
is reasonable to hypothesize if they were trained together,
their collective classification error would drop. So, instead
of using the data for when each of these networks were pre-
trained independently, we allow the backward propagation
training method to broadcast the classifier gradients to all
networks. Since all networks iterate through the same set of
gradients in parallel, they all influence each other’s weight
and bias values. Due to the limited computation capability
available to us, we have been unable to generate results for
this step. We will continue working on this scheme via once
we have access to more powerful GPU machines.

7.2. Weighted S-NN

Our analysis of the confusion matrices on the available
datasets made us realize while the combination of network
features in S-NN helps reduce errors, it is also the case that
some networks introduce excessive confusion to the error
rate of S-NN. To reduce such adversarial impacts of S-NN,
we plan to combine features by applying weights to each
network feature. The weight coefficients will be dependent

6



on the prediction accuracy of each network in classifying
a given dataset. For instance, if GoogLetNet CNN shows
weaker classification performance relative to the Places
CNN, the relative contribution of GoogLeNet features will
be reduced. To do so, the feature vector of each network is
multiplied by a scalar value in [0, 1]. This value is computed
by dividing the classification accuracy of each NN by the
accuracy of the network with the best result. For instance,
assume a S-NN consisting of {GoogLeNet, VGG16}. If
GoogLeNet and VGG16 have individual classification ac-
curacy of 0.3 and 0.6 respectively, the GoogLeNet and VGG
features are multiplied by 0.5 and 1 respectively before
stacking their features.

7.3. Data Augmentation

Data augmentation has improved classification accuracy
via diversifying NN features. Literatures [11, 2, 17] show
substantial improvement in the MIT Scene, CUB 200, and
Oxford Flowers datasets when their networks are trained us-
ing data augmentation. While we have been short in time to
try this technique, we believe it will substantially boost our
prediction accuracy on most datasets if not all.

7.4. Parallel Wimpy Networks

Inspired by the notion of ensembles presented by Hinton
et al. [6], this study proves combining multiple powerful
networks leads to more substantial performance gains. It
also proves training a single network on multiple datasets
can deliver better generalization accuracy. The next mile-
stone we would like to tackle is to evaluate the possibility
of building numerous small, fast-to-train networks trained
on multiple datasets and stacked as S-NN’s. We call them
a stack of wimpy neural networks. Such a technique is in-
teresting to us from two fronts. First is to find if multiple
wimpy S-NN’s can do as well as (or better than) a powerful
network like VGG19. Second is to find if this architecture
can help reduce computation overhead demand of recent
deep neural networks, such as VGG19 by enabling a much
more parallelizable network architecture with the ability to
be conveniently offloaded onto multiple computation units
(i.e. CPU’s or GPU’s).

8. Conclusion

In this work, we presented Stacked Neural Networks,
a novel technique in extracting higher generalization accu-
racy from the state-of-the-art neural networks in the public
domain. We evaluated various NN stack combinations and
discovered that while a five-CNN stack delivers the best ac-
curacy, the stack of two CNN’s can deliver similar accuracy
gains while consuming much less computation power. We
also presented the classification accuracy improvements of
generating the ensemble of S-NN’s. The combination of

these techniques enabled us to boost the classification accu-
racy beyond the state-of-the-art results presented in previ-
ous literature.

Furthermore, we evaluated the effect of training multi-
ple datasets on one network. Interestingly enough, we con-
cluded that it is possible to jointly finetune a single network
over multiple datasets and still obtain accuracies that are al-
most similar to individual finetuning of the networks. We
also show that these jointly finetuned networks have better
generalization capabilities than individually finetuned vari-
ants.

S-NN proves the presence of fruitful impact in fostering
collaborative neural network classification to improve gen-
eralization accuracy in transfer learning.

References
[1] Caffe model zoo.
[2] L. Bossard, M. Guillaumin, and L. Van Gool. Food-101 –

mining discriminative components with random forests. In
European Conference on Computer Vision, 2014.

[3] L. Chen. Learning ensembles of convolutional neural net-
works.

[4] G. Griffin, A. Holub, and P. Perona. Caltech-256 object cat-
egory dataset. 2007.

[5] P. V. Group. A GPU Implementation of GoogLeNet.
[6] G. Hinton, O. Vinyals, and J. Dean. Dark knowledge. Lec-

ture, 2014.
[7] A. Krizhevsky, I. Sutskever, and G. E. Hinton. ImageNet

Classification with Deep Convolutional Neural Networks. In
F. Pereira, C. J. C. Burges, L. Bottou, and K. Q. Weinberger,
editors, Advances in Neural Information Processing Systems
25, pages 1097–1105. Curran Associates, Inc., 2012.

[8] M. Lin, Q. Chen, and S. Yan. Network In Network.
arXiv:1312.4400 [cs], Dec. 2013. arXiv: 1312.4400.

[9] J. Mao, W. Xu, Y. Yang, J. Wang, and A. Yuille. Deep
Captioning with Multimodal Recurrent Neural Networks (m-
RNN). arXiv:1412.6632 [cs], Dec. 2014. arXiv: 1412.6632.

[10] A. Mogelmose, M. M. Trivedi, and T. B. Moeslund. Vision-
based traffic sign detection and analysis for intelligent driver
assistance systems: Perspectives and survey. Intelligent
Transportation Systems, IEEE Transactions on, 13(4):1484–
1497, 2012.

[11] M.-E. Nilsback and A. Zisserman. A visual vocabulary for
flower classification. In Proceedings of the IEEE Confer-
ence on Computer Vision and Pattern Recognition, volume 2,
pages 1447–1454, 2006.

[12] M.-E. Nilsback and A. Zisserman. Automated flower classi-
fication over a large number of classes. In Computer Vision,
Graphics & Image Processing, 2008. ICVGIP’08. Sixth In-
dian Conference on, pages 722–729. IEEE, 2008.

[13] A. Quattoni and A. Torralba. Recognizing indoor scenes.
2009.

[14] A. S. Razavian, H. Azizpour, J. Sullivan, and S. Carlsson.
Cnn features off-the-shelf: an astounding baseline for recog-
nition. In Computer Vision and Pattern Recognition Work-

7



shops (CVPRW), 2014 IEEE Conference on, pages 512–519.
IEEE, 2014.

[15] K. Simonyan and A. Zisserman. Very Deep Con-
volutional Networks for Large-Scale Image Recognition.
arXiv:1409.1556 [cs], Sept. 2014. arXiv: 1409.1556.

[16] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed,
D. Anguelov, D. Erhan, V. Vanhoucke, and A. Rabinovich.
Going Deeper with Convolutions. arXiv:1409.4842 [cs],
Sept. 2014. arXiv: 1409.4842.

[17] C. Wah, S. Branson, P. Welinder, P. Perona, and S. Belongie.
The caltech-ucsd birds-200-2011 dataset. 2011.

[18] J. Yosinski, J. Clune, Y. Bengio, and H. Lipson. How trans-
ferable are features in deep neural networks? In Advances in
Neural Information Processing Systems, pages 3320–3328,
2014.

[19] B. Zhou, A. Lapedriza, J. Xiao, A. Torralba, and A. Oliva.
Learning Deep Features for Scene Recognition using Places
Database. NIPS, 2014.

8


