
Recognition of Online Handwritten Mathematical Expressions Using
Convolutional Neural Networks

Catherine Lu
Computer Science, Stanford University

cglu@stanford.edu

Karanveer Mohan
Computer Science, Stanford University

kvmohan@stanford.edu

Abstract

We further investigate the problem of recognizing hand-
written mathematical expressions, which we also chose for
our CS221 final project [3]. Being able to change handwrit-
ten expressions into LATEX has applications for consumers
and academics. While large amounts of work have been
done for digit and character recognition [2] [10], much less
progress has been made surrounding handwritten expres-
sion recognition. To the best of our knowledge, no papers
have been published applying Convolutional Neural Net-
works (CNNs) to the task of handwritten expression recog-
nition. We build an end-to-end system using our best CNN
model to go from strokes to symbols to a LATEX expression.
We also compare our results to other systems; experimen-
tal evaluation suggests that CNNs are a powerful tool for
handwritten mathematical expression recognition.

1. Introduction

Mathematical typesetting systems and editors such as
LATEX are widely used for formatting mathematical expres-
sions. They produce well-formatted and professional out-
put. However, they are slower to use than handwriting and
may have a steep learning curve for new users. A system
that recognizes handwritten mathematical expressions and
turns them into a machine-readable format such as LATEX
would allow a user to benefit from the best of both ap-
proaches, but building such a system is difficult. There are
many different mathematical symbols used, and there often
are ambiguities in symbol location and layout in handwrit-
ten expressions [4].

The 2013 Competition on Recognition of Online Hand-
written Mathematical Expressions (CROHME) was won by
Vision Objects (now named MyScript), with 60% accu-
racy at the expression level; second place only achieved
23% accuracy. Vision Objects is a privately held company
with proprietary technology [5], so while public-domain re-
search has the potential to reach much higher accuracies,

it is currently unclear how this can be achieved. The poor
results in CROHME reflect the general state of handwrit-
ten expression recognition public research. Further, to the
best of our knowledge, no papers have been published ap-
plying Convolutional Neural Networks (CNNs) to the task
of handwritten expression recognition.

Our project investigates the problem of recognizing
handwritten mathematical expressions, which we also
chose for our CS221 final project [3]. Our primary con-
tribution is in creating an end-to-end system using a well-
trained CNN model to go from strokes to symbols to a LATEX
expression.

2. Background & Related Work
2.1. Handwriting Recognition

Much work has been published to date on recognizing
handwritten numbers and English words [6]. Character
and digit recognition are very well-studied problems; the
MNIST dataset is often used as a dataset to try out new
machine learning models because it is so widely used [10]
[4]. In the research community, handwriting recognition has
two different forms: offline recognition, where the writing
is done in a non-digital medium such as paper, and online
recognition, where the writing is done in a digital medium
that records pen-tip movements such as a tablet. Naturally,
online recognition accuracy is higher than offline recogni-
tion accuracy, since additional information is provided for
online about how the writing is done. Nevertheless, offline
handwriting recognition is used in large-scale real-world
systems such as interpreting handwritten postal addresses
or monetary values on bank checks [6].

Significantly less work has been done on handwritten
mathematical expression recognition. Prior to CROHME,
the relatively small number of math recognition research
was done without benchmark data sets, standard encodings,
or evaluation tools; this made progress slow and collabora-
tion difficult for the community [4]. The CROHME compe-
tition, organized since 2011, seeks to make it much easier
to get started working on handwritten math recognition and

1

meaningfully compare systems [4].

2.2. Convolutional Neural Networks

Our approach relies heavily on CNNs, which are widely
used for a variety of vision recognition problems. Many pa-
pers document ways of achieving better results when train-
ing/evaluating CNNs, including using slant correction on
images [7], elastic distortions to increase the size of the
training data set and robustness of the model [9], and ex-
tracting additional features from images as inputs to the
CNN [7] [8] [9]. We will use some of these methods in
our approach to the problem.

3. Approach
Our pipeline has five distinct phases: (1) data set en-

richment, (2) image segmentation, (3) data extraction, (4)
character-level classification, and (5) expression-level clas-
sification.

3.1. Data set

Before it is possible to explain our approach, it is neces-
sary to talk about the data we are provided. Our data comes
from the CROHME competition, which provides train and
test datasets freely available for research purposes:

Symbols (S) Expressions (E) S/E
Train 16970 2259 7.5
Test 8195 836 9.8

There are 75 different mathematical symbols present in
the datasets. The data is given in Ink Markup Language
(InkML) format, which is a specific XML type that is
specifically used to describe digital writing [1]. Each
expression is represented in a separate <ink> element.
Within an expression, each stroke is then represented in a
separate <trace> element; the contents of the <trace>
element are X-Y coordinates representing the places at
which the pen-tip is over time.

<ink>
<trace>-238 -91, -238 -91, -238 -92,
-238 -92, -238 -92</trace>
<trace>-235 -103, -235 -103, -235 -103,
-234 -103</trace>
<trace>-218 -88, -218 -88, -219 -90,
-220 -89, -220 -89, -220 -89, -220
-89</trace>
<trace>-198 -93, -198 -95, -198 -96,
-198 -97, -198 -97, -198 -98</trace>
</ink>

A sample of InkML

3.2. Data set enrichment

We increase the size of our training data set by adding
distortions to the original dataset. This is done through a
method suggested in [9]: to use an interpolation scheme
to slightly displace each of the pixel values in an image;
thus, for each data point we get from the trace, we randomly
select one of -1, 0, 1 to add to each of the coordinates. We
increase our training dataset to twice the size by adding a
distorted version of each expression.

Figure 1.

3.3. Image Segmentation

Though we are given trace information from the dataset,
it becomes necessary to determine which traces comprise
a complete symbol for eventual symbol classification. We
use the straightforward heuristic that intersecting traces are
part of the same symbol. There are two cases in which the
heuristic fails. In the first case, it may fail if there is overlap
between two symbols. In the second case, symbols which
generally do not contain overlap, such as =, will fail almost
all the time. To account for this, we add an additional step to
find symbols with non-intersecting strokes e.g. =, log, sin,
cos, etc. The additional step considers additional strokes
even if they are non-overlapping. If our best classifier de-
termines that the strokes considered constitute one of these
symbols with probability of at least 0.7, we segment these
strokes out as that symbol.

Figure 2. This expression would be perfectly segmented.

3.4. Data extraction

We transform the InkML data into a form that our mod-
els can handle. We change the InkML data comprising indi-
vidual mathematical symbols into normalized images repre-
sented as pixel arrays. Then, we blur the pixels and include
the number of strokes as an additional feature. Pixel blur-
ring is done by changing the pixel information from 0s and
1s to a distribution with mean 1 on the pixel and noise with
0.2 decreasing information in the surrounding pixels for ev-
ery pixel distance away (defined by euclidean distance). For
the CNN models, including the number of strokes is done
only in the last affine layer.

2

The pixel arrays are normalized to size 24x24 pixels for
the classifiers, except for the 4-layer CNN which takes in a
pixel array of size 32x32.

Figure 3. a) The symbol b) As InkML c) As pixel array

3.5. Character-Level classification

We train a classifier to output one of 75 symbol classes.
Our baseline classifier is the SVM classifier trained previ-
ously for CS221 [3], which saw 87% accuracy for the test
and train datasets.

Though we believe that CNNs will work much better,
we train fully-connected neural networks (NNs) as another
baseline of comparison.

Finally, we spend most of our efforts in training good
CNNs for the character classification task. This is done by
training multiple models with different architectures and pa-
rameters in an effort to find the best trained CNN for this
task.

3.6. Expression-level classification

Performing symbol-level classification alone leaves out
much of the important contextual information that a mathe-
matical expression provides. For instance, x = 1 is a valid
mathematical expression, and it is more likely to be what
was written as opposed to x =<.

To leverage this idea, we use Hidden Markov Models
(HMMs) with binary and unary potentials. HMMs allow
us to determine the most likely sequence of symbols in an
expression, given the probabilities of each symbol (unary
potentials) and conditional probability of symbols given the
symbol before it (binary potentials). The probabilities used
as unary potentials are calculated using the best trained
CNN model from character-level classification. Binary po-
tentials are approximated using their empirical occurrence
from the training data set with a Laplace smoothing of 1.
We approximate the best expression with Gibbs sampling
using a sample size of 2000. In each sample, a symbol is
randomly chosen to vary; setting all others constant, the se-
lected symbol is changed to that which is most likely is cho-
sen. Ultimately, the sequence of symbols that is most com-
mon among the sample size of 2000 is taken as the classified
mathematical expression.

As a concrete example, consider an expression with 3
symbols, which we will label as A B C. If we choose A as

the symbol to vary, we calculate

argmax
s

p(A = s) ∗ p(A = s|A is start tag) ∗ p(B|A = s)

where s denotes the symbol we are choosing. Note here
that since A is chosen, C doesn’t affect the probability as
we are only using the probability given the preceding tag
i.e. binary potentials.

4. Experiments
We will now report results of image segmentation,

character-level classification, and expression-level classifi-
cation. Note that the results reported do not use distortions
mentioned in 3.2 since we observed that distorting the im-
ages and doubling the dataset size did not provide measur-
able improvements in accuracy. Additional ideas related to
elastic distortion are discussed in Section 5.

4.1. Character-level classification

Our first step is to train a good classifier, which will be
needed for segmentation and for the HMM. As previously
mentioned, our baseline SVM classifier to beat has a train
and test accuracy of 87%.

4.1.1 Neural Network

We tune a 2-layer fully connected NN. The best results
(with test accuracy ≥ 20%) are reported below with dif-
ferent sizes for the hidden layer (H), though note that we
tuned with many more parameters. While our accuracy is
fairly high considering that there are 75 symbol classes, it is
nowhere near the best performance from our baseline SVM
classifier.

Parameters that we tuned also include the learning rate,
regularization, momentum, batch size, and learning rate de-
cay.

Parameters Train Test
H = 200 25.3% 20.3%
H = 500 40.0% 30.2%
H = 1000 40.1% 31.4%

We observe that the accuracies for H = 500 and H =
1000 are very similar, although one has 500 hidden neurons
while the other has 1000. This suggests that adding addi-
tional neurons beyond 500 does not capture anything else
in the data.

4.1.2 Convolutional Neural Network

Most of our time in character-level classification has been
spent training and tuning CNNs. The architecture used

3

Figure 4. The most over-represented misclassified symbols.

for the CNNs is of the form [Conv-Relu-Pool]xN - [FC -
Relu]xM - [FC] - [Softmax]. Our best test accuracy is 90%.
The parameters that we report along with our values of N
and M are filter size (F) and number of hidden neurons per
layer (H). The number of filters used is 32 for all architec-
tures. In the pooling step, we use a 2x2 max pool with stride
of 2.

Our best results, for each architecture and after parame-
ter tuning, are below. Parameters that we tuned also include
the learning rate, regularization, momentum, batch size, and
learning rate decay.

Parameters Train Test
N = 1, M = 0, H = 32, F = 5 92.3% 82.6%
N = 2, M = 0, H = 1000, F = 5 95.4% 83.8%
N = 2, M = 1, H = 1000, F = 5 96.6% 88.9%
N = 3, M = 1, H = 500, F = 7 98.7% 89.7%
N = 4, M = 1, H = 500, F = 5* 99.6% 86.7%

*Used 32x32 pixel images instead of 24x24.

Note that even a shallow CNN produces accuracies com-
parable to our baseline, and the CNN with N = 3/M = 1
beat the baseline with a test accuracy of 90%.

4.1.3 CNN Error Analysis

With our best CNN, where N = 3 and M = 1, we
look at which symbols are most disproportionately mis-
classified. That is, we give each symbol a score S =
% chosen incorrectly − % chosen correctly and sort them
descending. Figure 4 plots the symbols that are most dispro-
portionately misclassified. The most over-represented mis-
classified symbol is the comma, which makes sense since
we do not include original size information from the sym-
bol. So, it is difficult for the CNN to distinguish it from the
number 1, for instance.

Figure 5. The visualized weights in the first hidden layer of the
two-layer CNN when N = 1 and M = 0. Many of the weights
appear to represent different edges.

4.2. Segmentation

Now, we perform segmentation as described previously.
We compare the results of our segmentation accuracies us-
ing the heuristic + CNN against values previously deter-
mined from [3] using the heuristic alone and using the
heuristic + SVM. The CNN used is our best CNN, where
N = 3 and M = 1, and the SVM used is the same baseline
SVM. Below are the segmentation accuracies when evaluat-
ing symbol (S)-level and expression (E)-level segmentation
accuracies.

4

Figure 6. The top-10 symbols that contribute to segmentation error.

S (all) E (all) S (*) E (*)
Heuristic 81% 17% 89% 45%

Heuristic + SVM 87% 35% 92% 53%
Heuristic + CNN 88% 39% 93% 56%

* Ignores =, i, j, ≤, log, sin, cos, lim, ≥,→, ÷

Our heuristic + CNN slightly outperforms the heuristic
+ SVM model on segmentation at the symbol-level. This
performance boost is compounded at the expression-level,
where there is a larger increase in accuracy.

4.2.1 Heuristic + CNN Error Analysis

It is useful to determine where we are still falling short in
terms of segmentation accuracy. So, we plot the top-10
symbol contributing to segmentation error (see Figure 6).

The sin and cos symbols are the top contributors to seg-
mentation error; combined, they comprise 17%+ of all seg-
mentation errors. They are also the two symbols that con-
tributed the most to error for the heuristic + SVM case. Fur-
ther, relaxing the threshold at which the CNN segments out
a symbol with non-overlapping strokes does not improve
the segmentation accuracy; while it increases the segmenta-
tion accuracy of sin and cos, for instance, the segmentation
accuracies of 1-stroke symbols such as numbers and paren-
theses decreases. This suggests that the CNN is not very
confident when classifying sin and cos compared to other
symbols. One possible solution to this problem is to in-
crease the number of sin and cos training examples to give
the CNN more data for more confident classifications. An-
other solution is to hand-tune thresholds for different sym-
bols, but this is less than ideal as it would be a very manual

process.
Of course, in our segmentation approach we are making

the big assumption that if strokes are overlapping, they be-
long to the same symbol. Below is a simple example where
our segmentation approach fails.

Figure 7. A case where segmentation fails. The symbols A and x
intersect, so segmentation will mistakenly view them as one sym-
bol instead of two.

4.3. Expression-level classification

4.3.1 Expression-level accuracies

At this point, it’s useful to determine the overall expression-
level accuracies of our system.

No. of symbols wrong: 0 ≤ 1 ≤ 2
SVM* 35% 64% 80%
CNN* 39% 64% 83%
SVM † 16% 37% 56%
CNN † 18% 39% 57%

*With perfect (i.e. ground truth) segmentation
†With heuristic segmentation + trained model

Our CNN-based system outperforms our SVM-based
system. Understandably, the expression-level accuracy is
significantly lower than our symbol-level accuracy, even

5

with perfect segmentation. This emphasizes the importance
of future work to improve the character-level classification
to get much better expression-level accuracy.

Another approach to improving expression-level accu-
racy that we’ve chosen to implement is to use HMMs to
take advantage of contextual information. Details are in the
next section.

4.3.2 Using Hidden Markov Models

As the last step, we use HMMs to improve the expression-
level overall accuracy. We discard 100 of the expressions
for the burn-in period. Results are:

No. of symbols wrong: 0 ≤ 1 ≤ 2
* 41% 66% 83%
† 19% 41% 58%

*With perfect (i.e. ground truth) segmentation
†With heuristic segmentation + trained model

Expression-wide baseline SVM results were not reported
in [3]. The best symbol-level accuracy obtained from previ-
ous work was 85%, down from 87% without HMMs.

Note that using HMMs make expression-level accuracy
slightly better. We then further investigate what impedes
additional accuracy increases from HMMs.

The figure below highlights some of the differences in
how particular symbol class accuracies increased or de-
creased significantly. We show the top 3 symbols with the
worst improvement, and the top 3 symbols with the greatest
improvement through the use of HMMs.

% accuracy: W/ HMM W/o HMM Diff
≥ 35% 100% -65%
m 10% 67% -57%
< 39% 83% -44%
∞ 86% 74% 12%
π 63% 50% 13%
lim 93% 0% 93%

We also want to look at the most popular symbols, and
see how they are affected. Below are the top 5 most popular
symbols, along with their % change with the HMM:

% accuracy: W/ HMM Diff Count
− 99.9% 0.3% 922
2 96.1% 1.3% 893
1 92.5% 2.3% 729
+ 100.0% 0.8% 683
x 94.8% 2.0% 681

Overall, using the HMM helps for symbols that are more
popular. Since they appear more, their conditional probabil-
ity given other symbols is higher and they are more likely to
be chosen in an expression. Conversely, the HMM will pe-
nalize symbols that are less likely to appear. This trade-off
ultimately slightly helps for our results overall.

5. Conclusion & Future Work
From our research, we’ve learned that CNNs are a strong

approach to solving handwritten expression recognition.
With better computing resources and more time, it may be
possible to significantly increase the overall expression ac-
curacy. Small percent increases in accuracy at the symbol
level have drastic effects at the expression level, since the
symbol accuracies are compounded at the expression-level.
One potential way to increase symbol-level accuracy is to
train deeper CNNs with smaller filter sizes. Another would
be to do additional types of dataset distortions such as rota-
tions and other affine transformations.

There are several limitations with our work. Our ap-
proach to segmentation must be refined; the 88% segmen-
tation accuracy cuts the overall expression accuracy in half.
There are many other segmentation approaches to try; one is
the approach that the second-place team, from Univ. Valen-
cia, did for CROHME 2013. Their system contains a parser
which builds multiple hypotheses for segmentation, sym-
bol classification, and structural relation. The most likely
hypothesis is then chosen [4]. This is a natural extension
to our work; we should include different segmentation hy-
potheses as input into the HMM as well.

Another limitation is that we ignore spatial information.
However, spatial information to recognize fractions, sum-
mations, etc. is necessary in mathematical handwriting
recognition. Again, we could try the approach done by
the Univ. Valencia team, which encodes spatial information
while building their hypotheses [4].

A third limitation is that we ignore size information. This
is evident by our misclassified symbols graph, which shows
that the comma is the most over-represented misclassified
symbol. By including a normalized size into the last affine
layer of the CNN, this issue may be mitigated. All of these
are promising potential areas of future work.

6. Acknowledgements
Thank you to the CS231N staff for putting together such

an amazing class. We’ve learned a ton.

References
[1] Ink markup language. http://www.w3.org/TR/InkML/.
[2] D. Cirean, U. Meier, and J. S. Schmidhuber. Multi-column

deep neural networks for image classification. CoRR,
abs/1202.2745, 2012.

[3] C. Lu and K. Mohan. Recognition of online handwritten
mathematical expressions, 2013.

[4] H. Mouchere, C. Viard-Gaudin, R. Zanibbi, U. Garain, D. H.
Kim, and J. H. Kim. Icdar 2013 crohme: Third international
competition on recognition of online handwritten mathemat-
ical expressions. Conference: International Conference on
Document Analysis and Recognition (ICDAR), 2013.

6

[5] MyScript. Demonstration portal. Previously Vision Objects.
http://webdemo.myscript.com/.

[6] R. Plamondon and S. Srihari. On-line and off-line handwrit-
ing recognition: A comprehensive survey. IEEE Transac-
tions on Pattern Analysis and machine intelligence, 22(1),
2000.

[7] A. Rehman and T. Saba. Neural networks for document im-
age preprocessing: state of the art. Artificial Intelligence
Review, 42(2):253–273, 2014.

[8] J. Shah and V. Gokani. A simple and effective optical charac-
ter recognition system for digits recognition using the pixel-
contour features and mathematical parameters. (IJCSIT) In-
ternational Journal of Computer Science and Information
Technologies, 5(5), 2014.

[9] P. Y. Simard, D. Steinkraus, and J. C. Platt. Best practices for
convolutional neural networks applied to visual document
analysis. Institute of Electrical and Electronics Engineers,
Inc., August 2003.

[10] O. D. Trier, A. K. Jain, and T. Taxt. Feature extraction meth-
ods for character recognition-a survey. Pattern Recognition,
29(4):641 – 662, 1996.

7

