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Abstract

In this paper, we explore the applications of convolu-
tional neural networks towards solving classification and
retrieval problems as they pertain to images of shoes. Hav-
ing collected a dataset of over 30,000 shoes, we attempt to
classify each shoe into its appropriate shoe category as well
as to retrieve the top 5 most similar shoes in the dataset. To
solve each of these problems, we experimented with multiple
network architectures. For the problem of classification, we
determined that even a shallow 3 hidden layer network was
able to classify the shoes with accuracies above 90%. For
retrieval, we eventually settled on using transfer learning
to apply the VGGNet architecture to our problem. Extract-
ing the last fully connected layer from a pretrained model
gave us feature vectors for each shoe image in the dataset.
Computing Euclidean distances between these feature vec-
tors and that of our query image and returning the closest
matches allowed us to achieve 75.6% precision on retrieval
and an average subjective quality score of 4.12/5. On the
whole, convolutional neural networks allowed us to classify
and compare shoes at a remarkably high degree of accu-
racy, significantly outperforming prior work done on this
specific problem.

1. Introduction
Since the term artificial intelligence was coined,

mankind has sought to train computers to see as we do. One
of the most overlooked aspects of human cognition is sight,
and when we consider the scope of the problem from a com-
puting perspective, we realize just how powerful the human
brain actually is, going from the real world to a series of
firing neurons to recognition and response in (literally) the
blink of an eye.

There is immense research being done in the field of vi-
sual search, based loosely around the adage that a picture
is worth a thousand words. On the internet today, however,
the converse may in fact be true: it is easy and effective to
do a Google search with plain text, but doing a visual search
with an uploaded image yields unpredictable results. With

picture data being readily available, and an ever-increasing
number of mobile devices being given cameras and connec-
tions to the internet, we predict that interest in this field will
continue to grow, bringing with it a desire for services that
accept pictures as input and return recommendations and in-
sights based on them. This project seeks to take a first step
towards achieving that goal.

Specifically, we have chosen to focus on shoe rec-
ommendations and comparisons as our service of choice.
Shoes are a popular consumer product, with sufficient va-
riety in market for a service built around them to be use-
ful. Shoes are also almost entirely bought and sold on vi-
sual appeal - the appearance of a shoe is generally what
people gravitate towards, and when shoes are vocally ap-
preciated or admired, the conversation often trends towards
where they were bought and how much they cost. More-
over, shoes are mainly differentiated on three visual char-
acteristics - shape, texture, and color [12]. Convolutional
neural networks are renowned for their ability to learn basic
shapes, textures, and colors, making this problem a good fit
for the application of neural networks [8].

Overall, our approach is to train one or more convolu-
tional neural networks on large shoe datasets, and then use
these trained networks to perform two tasks: classify input
images into shoe classes, and perform a nearest-neighbors
analysis to return the shoes most similar and most relevant
to the input.

2. Background and Related Work
Given the inefficiencies in the retail space, this is a prob-

lem that many people are trying to tackle in the real world
right now. A clothing recommendation engine, Kaleido-
scope, initially tried to recommend similar clothing items to
its users by utilizing machine learning-based classification
methods but ended up settling for manual classifications due
to an inability to properly classify the stylistic elements of
retail goods that they were assessing. Another company that
was actually fairly successful at classifying similar retail
goods on the basis of images was Modista [10], a computer
vision and machine learning based retail good recommen-
dation service. We spoke with one of the co-founders of
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Modista to gather his perspective and he mentioned that his
team examined similarity between shoes primarily on the
basis of shape and color, which is evident in the image be-
low that is an example recommendation from their website.
The Modista website also requires users to click through
multiple images to generate a similar image and is an inter-
face that is high friction and painful for users.

Figure 1. A set of shoe recommendations generated by Modista.

There has also been some non-commercial, academic
work in this space. While progress has been made to solve
individual subproblems of this problem, none of the work
has been particularly successful at creating a very accurate
and robust image-based recommendation engine.

We also examined work by Borras et al. through a UAB
Bellaterra paper entitled “High-Level Clothes Description
Based on Colour-Texture and Structural Features” [1]. In
this work, the authors seek to interpret five cloth combina-
tions in a graphical structure to try to ascertain what some-
one is wearing from an image. While the work that the re-
searchers did is interesting, they only achieved a 64% over-
all accuracy. This work demonstrated the difficulty of this
problem in a natural setting. In addition, this paper repre-
sents another example of work that is using traditional com-
puter vision and machine learning techniques to attack sim-
ilar problems, but does not use the deep learning techniques
explored by this paper.

Although it is also not exactly the same problem, the
work done by Bossard et al. [2] is another example of aca-
demic attempts to solve problems related to the fashion and
retail industry using core computer vision principles. This
paper again demonstrates the shortcomings of traditional
techniques in solving problems of reasonably complexity.

Lastly, we cite work that we have previously done to-
wards this project as work for previous classes we have
taken, CS 229 [14] and CS 231A [15]. In both attempts,
we used traditional methods in Machine Learning and Com-
puter Vision accordingly, to attempt to solve this problem. It
was evidently clear that such methodologies were not robust
enough to perform this task at a very high level, which was
part of what drove us towards solving this problem using
deep learning techniques. We topped out at roughly 60%

classification accuracy, even with very generic labels, and
could never get more than half of the recommendations cor-
rect for the retrieval task.

3. Approach
Our problem is clearly twofold, and consists of both clas-

sification and retrieval - we seek to take an input image,
figure out what kind of shoe it corresponds to, and also re-
turn the closest visual matches to it, essentially serving as
a computerized shoe-store employee. We present below the
various approaches considered for each of the tasks in turn:

3.1. Classification

This part of the problem is a canonical, textbook usage
of convolutional neural networks. Our first approach was to
pick a dataset and train a network from scratch, tuning pa-
rameters to maximize efficacy and accuracy. This approach
would require a moderately sized dataset and significant
computational resources, proportional to the depth of the
network chosen [4]. This approach is also the most obvious
application of neural networks - for a straightforward clas-
sification problem, the general model is to train a classifier
and tune those results [5]. For the sake of completeness,
especially given the fact that we had no idea whether this
approach would perform well at all, we formulated other
courses of action to be applied in the event of poor results.
Our first backup approach was to rely on fine-tuning another
network using our selected shoe dataset in an application of
transfer learning [7]. This approach would require (again)
significant computational resources, but we would be able
to use a smaller dataset, since much of the training process
would have already occurred while finalizing the weights of
the original network we are fine-tuning. In the event neither
of these approaches worked, we were willing to reduce the
number of labels and make the class distinctions more obvi-
ous - for instance, removing the distinction between loafers
and oxfords. We expected that this would boost network
accuracy by making the classification problem simpler.

Evaluating the performance of the classification problem
is easy - using a withheld validation set, we would be able to
see how accurate our network ended up being and use that
accuracy metric to gauge how well the network is doing [6].
In general, the higher the (training and validation) accuracy,
the better. We also hoped to test our network against images
not in the official dataset, and ideally from the real world
(i.e. our own cameras); this would be a powerful indicator
as to the adaptability of our network to a wider range of
input data.

3.2. Retrieval

The retrieval aspect of the problem is a less canonical
usage of convolutional neural networks. The key to this
part is boiling each image down to a lower-dimensional
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representation Xi, then comparing an input image’s lower-
dimensional representation X ′ to each Xi using some dis-
tance metric, returning the “closest” matches to the input
in a manner akin to nearest neighbor analyses [11]. The
trick, then, is to pick a good lower-dimensional represen-
tation and a good distance metric. We readily picked L2
distance as our metric of choice, both for its computational
simplicity, its roots in Euclidean geometry, its popularity,
and our familiarity with what it means in a literal sense:

L2(i, j) =
√
(Xi −Xj)2

As seen above, the L2 distance between images i and j is
the 2-norm of the difference between their chosen repre-
sentations Xi and Xj . Having picked our distance metric,
our first approach for this part was to use the trained-from-
scratch network from the classification task as a feature
extractor rather than a classifier - without any knowledge
of the actual network architecture, treating the last-but-one
fully connected layer as a feature vector for an image may
yield good results, especially if the network itself performs
well in the classification task [7]. After training the net-
work, this approach would be computationally simple and
just require a single pass back over our dataset to extract
features for each image. After these features are stored,
all that remains is to extract the features for a given in-
put image and perform a one-to-many comparison over the
stored features, returning the images that have the small-
est L2 distance separating them and the input image. As
in the classification task, we were unsure as to whether this
approach would work and thus made some alternate plans
as well. Our first backup approach was to again rely on
transfer learning - rather than use our own network as the
feature extractor, we would use another pretrained network,
either with or without fine tuning, as the feature extractor,
again taking the second-to-last fully connected layer as the
feature vector output for each image [7]. The rest of the
process remained the same. This strategy would allow us to
test drive a variety of networks in the feature extractor role
and pick the one that worked the best.

Evaluating the performance of a retrieval problem is a
much harder task as compared to the classification problem,
essentially because the problem statement itself is fuzzier!
In the classification problem, there is absolutely a correct
answer, in that a running shoe can only ever be a running
shoe and a boot can only ever be a boot. The retrieval prob-
lem wants our engine to recommend shoes that “look sim-
ilar,” which is an inherently subjective, rather than objec-
tive, creterion. Here, “good” results are visually similar im-
ages, and “bad” results are dissimilar images. We planned
to either randomly sample enough of these results to get a
statistically significant confidence interval of accuracy, or
feed the results through mechanical turk to have real hu-
mans evaluate our success [14, 15].

4. Experiments
Having defined our approach in the section above, we

had three main areas of experimentation - our dataset, our
classification networks, and our retrieval networks. We also
experimented with various computational resources, rang-
ing from local machines to Terminal.com instances. We will
detail our full development process in the following subsec-
tions.

4.1. Computational Resources

We had initially hoped to develop our entire project
locally, as we had done in previous artificial intelligence
classes. However, convolutional neural networks are on
another scale entirely when it comes to memory and
CPU/GPU usage, and as such we had to look for other op-
tions. Even on our Apple MacBook Pros, with 16 GB of
RAM and nVidia GT 650M/750M graphics cards, we were
unable to efficiently train even the shallowest convolutional
neural networks without butchering our ability to get any
other work done. Another factor that pushed us towards
cloud computing was the difficulty installing Caffe [3], the
framework-of-choice for this class. When the teaching staff
offered us the option of preconfigured Terminal.com GPU
instances, complete with installed Caffe and ssh access, we
jumped at the opportunity. In retrospect, this may not have
been the ideal decision, as Terminal.com proved to be spotty
and unreliable for much of the development process. We
were unable to ever actually ssh into a Terminal.com in-
stance, and it seemed there were never any GPU instances
available whenever we sat down to work on the project.
Their billing practices also seemed quite strange, as we’d
work for just about 15 minutes, pause the instance, and
return to find two dollars missing from our account cred-
its. On the whole, if given the opportunity to select again,
we heard favorable things about GPU-configured AWS in-
stances, with some groups claiming that they were able to
find relatively recent Caffe snapshot images ready for de-
ployment through EC2. However, we were able to extract
good results from Terminal.com when it was working, and
thus our complaints are mostly irrelevant as they pertain to
the success of our project.

4.2. Dataset

Initially, we hoped to use the UT-Zap50K dataset [16],
a 260MB archive culled from Zappos.com by a research
group at the University of Texas, as our primary knowledge
base, as it appeared to be a labelled and pruned dataset that
satisfied our needs. It purportedly contained 50,000 unique
shoes that were organized via a topologically sorted list of
categories, as determined by a combination of the research
group and workers from mechanical turk. The images were
all supposed to be uniformly sized and compressed with
minimal artifacting, and the class labels were supposed to
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have been vetted with over 95% accuracy. However, rough
testing and visual inspection of this dataset made it very
clear to us that it was unusable. Specifically, many of the
images were miscategorized, the class labels themselves
were unspecific and vague, the images were severely com-
pressed (with tons of artifacts) to an odd aspect ratio, many
images were of a different size than the stated default, the
images were taken at an odd angle (from the front and above
as opposed to a sideways shot), there was a preponder-
ance of shoe duplication, there were far too many children’s
shoes, and there was no way to trace a shoe image back to
its origin on Zappos.com. These limitations made it impos-
sible for us to have much success testing either the classifi-
cation or retrieval aspects of our task. As such, we had to
look at other dataset options.

Since we were so enamored with the cleanliness and the
uniformity of shoe images on Zappos.com, we chose to
stick with the site as our source of images. Instead of using
the UT-Zap50K dataset, we decided to scrape our own man-
ually. This process involved dissecting the URL structure of
Zappos.com and a fairly extravagant HTML tag-parsing ex-
ercise, but after much trial and error, we were able to write
a script that would successfully go through and scrape an
entire gender’s worth of shoes from Zappos. The choice
of scoping by gender was made to limit the runtime of the
script - going for all the shoes listed on Zappos in a sin-
gle run would take about 8 hours, whereas scoping by gen-
der would allow for 3.5 hour to 4.5 hour parallel scraping
runs. After some delay and some internet connection sna-
fus, we were able to assemble a dataset of nearly 12,000
men’s shoes and 20,000 women’s shoes. Each shoe would
have two key elements tied to it: a shoe image taken from
the side (the image data) and a small text file with shoe
name, brand, price, SKU, rating, color, and category (corre-
sponding label(s)). An example of this is shown below:

Figure 2. Shoe image number 33 in the scraped dataset.

33
Nike Roshe Run C h a l l e n g e
Nike
Red / L a s e r Crimson / Midn igh t Navy / White
Shoes > S n e a k e r s & A t h l e t i c Shoes > Nike
0

$75 . 0 0
5
SKU 7925931

Corresponding metadata text file for shoe number 33.

Each image had exact dimensions 1920x1440 (high-
resolution 4:3 aspect ratio), with file sizes ranging from 100
KB to 600 KB. In total, the men’s shoes dataset took up
about 4 GB of storage uncompressed, while the women’s
shoes dataset used up about 6 GB of storage uncompressed.

We had initially hoped to send our data through mechan-
ical turk and have turk workers label each shoe with more
refined category information, but a combination of cost, dif-
ficulty setting up the turk task, and some egregiously bad
customer support from Amazon Payments made the me-
chanical turk dream impossible given the time constraints
imposed by the project. However, in retrospect, this may
have worked out in our favor, as many fellow students ex-
pressed dissatisfaction with how well turk workers managed
to tag their data. In contrast, Zappos.com simply doesn’t
have mislabeled or miscategorized shoes, and their labels
appear specific enough to get the job done. Some exam-
ples of shoe labels include “Athletic,” “Loafers,” “Sandals,”
‘Boat Shoes,” and “Boots.” These categories are different
enough for there to be obvious visual differences between
classes, but homogeneous enough within their own contexts
so as to make recognition (theoretically) simple. In total,
there were twelve shoe classes in this dataset.

A final challenge we faced with our dataset was moving
it around - extracting the dataset required a programmati-
cally accessible browser in Selenium and Google Chrome,
and thus we had to run the scrapers locally. However, shunt-
ing 10 GB of data into the cloud and/or onto a Terminal.com
instance proved debilitating, as for whatever reason three
different Terminal.com instances refused to accept our ssh
keys as valid. As a hacky workaround, we uploaded our
dataset to AFS and then copied it from there onto Termi-
nal.com, which took much longer but ended up working out
perfectly.

4.3. Network Architectures

In conceptualizing this project, we hoped that we would
get the chance to try out a variety of neural network archi-
tectures on both the classification and retrieval problems.
The use of Caffe [3] as our neural network framework made
this a very simple task, as the only work needed was to mod-
ify a protocol buffer file with architectural changes. We ex-
perimented briefly with a number of architectures, but per-
formed the vast majority of our trials and our training on the
following three networks:
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4.3.1 ViggyNet Small

This small three layer network was intended to be our san-
ity check network, suited for the task of making sure our
code actually worked. Its small size made training and test-
ing very quick, and it didn’t have the heinously large mem-
ory footprint of the larger networks. However, it was also
remarkably performant, as later results will show. The net-
work architecture was as follows:

INPUT → [CONV → RELU → POOL]× 2

→ FC → SOFTMAX

This setup had depth 32 at each convolutional layer, us-
ing standard 3x3 filters with pad 1 and stride 2 (thus pre-
serving the input size through convolutions, and halving the
image size after each size 2 stride 2 pooling layer) [4]. The
FC layer had 12 outputs, matching the number of classes
in our classification problem, and mapped directly to a soft-
max loss layer and an accuracy layer.

4.3.2 ViggyNet Large

This larger multi-layer network was the network that we felt
had the best chance for success. Based off the VGGNet
architecture [13], it was just a much smaller version of the
original behemoth; this reduction was made in the interest
of memory usage and training time until convergence. Its
architecture was as follows:

INPUT → [CONV → RELU → CONV → RELU

→ POOL]× 2→ FC → RELU → DROPOUT

→ FC → SOFTMAX

This setup had depth 64 in the first two layers, depth
128 in the second two layers, depth 512 in the first fully
connected layer, and 12 outputs right before the softmax
corresponding to 12 shoe classes. Again, we used stan-
dard 3x3 filters with pad 1 and stride 2, preserving input
size through convolutions and halving dimensions with each
pooling layer [4, 13]. Because of the memory requirements
of this network, we had to reduce the batch size for training
and testing down to 10 images at a time.

4.3.3 VGGNet

This network, borrowed directly from the Caffe Model Zoo
[3], was the full VGGNet [13] network that achieved re-
markable performance on the ImageNet challenge. Its ar-
chitecture was as follows:

INPUT → [CONV → RELU → CONV → RELU

→ POOL]× 5→ [FC → RELU → DROPOUT ]× 2

→ FC → SOFTMAX

This setup had exponentially increasing depth in each
layer, culminating in a first fully connected layer with 4096
outputs. It again used the canonical 3x3 filters with pad
1 and stride 2, and max pooling was done with 2x2 filters
and stride 2 [4, 13]. The memory requirements of this net-
work proved too much to actually train, and thus it was used
primarily in a transfer learning sense (though it was not
fine-tuned because of the same memory constraints) with
regards to the retrieval problem.

4.4. Classification

We now present our experimental method and results
for each of the convolutional neural network architectures
shown above:

4.4.1 ViggyNet Small

The first network we ran, ViggyNet Small, was a three hid-
den layer network intended to give a quick and dirty rep-
resentation and classification of our dataset. Instead, we
found that this network worked quite well for classification.
In just over two minutes of train time, this network was able
to go through 1500 iterations and reach reach a 92% valida-
tion accuracy with a loss of only 0.2217. We did try training
this for longer and with different parameters but found that
the classification accuracy had pretty much plateaued. We
are unsure as to why this network performs so well, espe-
cially since it doesn’t have very much capacity or depth.
We hypothesize that the classification problem is actually
less difficult for computers than we make it out to be, and
thus even with a shallow architecture the network is able to
give accurate classifications. It seems that the distinctions
between shoe classes and the similarities within a shoe class
are readily visible to the network.

4.4.2 ViggyNet Large

The second network we ran, ViggyNet Large, was a six hid-
den layer network which we trained in hopes of approximat-
ing the effects of VGGNet itself, while being able to train it
given our reduced computational resources. Unlike Viggy-
Net Small, this network did not classify that well, plateau-
ing at an accuracy of 64% and taking significantly longer
to train. We suspect that further parameter tuning and/or
training for longer would potentially improve the validation
accuracy of this network, but given the resounding success
of ViggyNet Small, we felt that our time would be better
spent in other areas.

4.4.3 VGGNet

The final network we used was VGGNet from the Caffe
Model Zoo [3]. We wanted to try training this network from
scratch and also fine-tuning the pretrained model using our
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dataset, but we were unable to do either, owing to the net-
work’s massive memory footprint and enormous overhead.
We fundamentally could not start training the network, even
with image batches of size 10. If we had better computa-
tional resources, we would expect that, with some param-
eter fine tuning and a lot of time, this model would per-
form extremely well, especially since the VGGNet model
achieves amazing accuracy on the much more difficult Im-
ageNet challenge. However, given the accuracy and speed
of ViggyNet Small, we didn’t lose much sleep over not be-
ing able to properly train VGGNet, instead figuring that we
would use this network for our retrieval task. Additionally,
as the VGGNet model is known to be notoriously difficult
to train [13], we felt that attempting to replicate this train-
ing process on a much smaller dataset and a much smaller
computer would be futile and pointless.

4.4.4 Summary

The following table summarizes the Classification results:

Train Time Iterations Accuracy Loss
Small 119 s 1500 92% 0.2217
Large 1296 s 1500 64% 0.5742

VGGNet N/A N/A N/A N/A

4.5. Retrieval

The other half of our report focused on using these net-
work architectures to solve the retrieval problem - namely,
given a query image, to be able to retrieve similar and rel-
evant shoes from the dataset. While the evaluating the per-
formance of these networks in this light is a bit more dif-
ficult, we chose to evaluate this using a subjective quality
rating as well as a standard precision metric [9]. In particu-
lar, 100 shoes were randomly sampled from the dataset and
submitted as query images. The top 5 results retrieved were
then subjectively rated on a scale from 1-5 in terms of their
relevance. Each of the top 5 responses for the query were
deemed relevant if they were given a 4 or a 5, and not rel-
evant otherwise - this was done to measure the number of
query responses that were deemed as good matches or that
might reasonably approximate the type of shoe that might
be suggested as similar by a salesperson in a shoe store.
The precision was then calculated by the following formula
[9]:

Precision =
# relevant items retrieved

# retrieved items

The top 5 ratings were also averaged to give a general
idea of how each network performed in terms of the pure
quality of the responses.

4.5.1 ViggyNet Small

While the ViggyNet Small network showed promising re-
sults in terms of classification, it was clear that the downside
of such a small network without robust feature dimension-
ality was the inability for the network to properly differenti-
ate between shoes for the purpose of retrieval. It appears as
though the features extracted from this network were not the
best metrics by which to judge shoe similarity. In particu-
lar, this network demonstrated much lower retrieval metrics,
having only 62.6% precision and an average score of 3.64.

4.5.2 ViggyNet Large

The ViggyNet Large network showed slight improvements
over the ViggyNet Small network, but even still did not per-
form all that well in terms of quality of recommendations.
The network showed marked improvement in terms of pre-
cision, retrieving relevant shoes 69.4% of the time, but very
marginal improvements in the average score as this only
rose to 3.71. This indicated to us that there were further
improvements to be had, particularly with regards to aver-
age score.

4.5.3 VGGNet

The VGGNet was the most promising of the three networks
in terms of retrieval. In particular, the robust features of the
network demonstrated and ability to consistently bring up
relevant, high-quality matches for any query shoe. This was
reflected in the network’s 75.6% precision metric and av-
erage score of 4.12. This represents a 12.6% improvement
in average score over ViggyNet Small. This performance
is even more impressive given that this network was not
fine-tuned for our dataset, something we surely would have
done given more computational power and time. Below is a
query and response example demonstrating a characteristic
output of our retrieval engine using VGGNet:

Query Image

Retrieved Reponses (top 3)
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4.6. Summary

The following table summarizes the retrieval task results:

Average Score Precision
ViggyNet Small 3.64 62.6%
ViggyNet Large 3.71 69.4%

VGGNet 4.12 75.6%

Overall, all of our networks performed moderately well
on the retrieval taks, but the VGGNet in particular stole the
show with its remarkable average match score and high pre-
cision. Retrospectively speaking, we realized that scoping
our results by shoe class would definitely improve our per-
formance further - that is, using the ViggyNet Small net-
work for classification and then filtering potential matches
by the shoe category would limit the candidate pool to only
shoes of the same type, which should theoretically improve
our metrics.

5. Conclusion and Future Improvements

The preliminary results of this project demonstrate a sig-
nificant improvement over our previous attempts to solve
this problem using traditional computer vision and machine
learning techniques - a testament to the power of deep learn-
ing methods. We believe that these results represent a very
good starting point for future improvements on this project.
It is clear to us that this work validates the hypothesis that
this is a solvable problem. We hope to further refine this
work and make it available to the masses in some capacity,
as well as expand this work into other consumer goods and
products.

In particular, we derived a couple of takeaways from this
project that will inform our next steps in working on this
problem. First off, we have realized the difficulty of fine-
grained classification and learning problems and, in partic-
ular, how much the quality of the dataset and the accompa-
nying labels impact that. This first became clear to us while
using the UT-Zap50K dataset, which had low quality label-
ing and organization and downsampled images, making it
nearly impossible for us to train any semblance of an accu-
rate model. After gathering our own dataset, we were able
to move forward, but became limited in some respects by
the quality of our labels. Given that nearly 45% of the la-
bels in our dataset are sneakers, the system struggles most
at differentiating between these types of shoes as there is
no separation between things such as tennis shoes or skate-
boarding shoes, although they look very different. Thus,
we believe that better labels with more granularity would
improve the quality of our dataset and therefore the perfor-
mance of our system.

The improvement of our dataset would also allow us
to properly and effectively implement another strategy we

believe would improve the quality of our retrieval sys-
tem. Specifically, when considering nearest matches for our
shoes in a k-nearest neighbor strategy, we would like to first
filter by the labeling of the shoes, which would allow us to
narrow the possible response for our retrieval and hopefully
result in more accurate and relevant responses.

Lastly, we believe that with access to stronger computa-
tional resources, we could improve on the best model, the
VGGNet, through the use of transfer learning by fine-tuning
the weights to our specific dataset. In addition to the data
we have aggregated from Zappos, we are in the process of
scraping data from many other sites on the web so that we
can build a larger dataset and train a more robust system
with a larger range of potential responses. It became clear
to use through this process that the depth and capacity of the
network were vital towards building an accurate retrieval
system and so having more computational resources would
allow us to match the increasing quality of our dataset with
better trained and higher capacity models. We also plan to
test our network(s) against photos of shoes taken in real life
to see how well they adapt to noisy real-world images.

Overall, we are very pleased with our results and hope to
build upon them in the months to come.
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