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Abstract

Convolutional Neural Networks (CNNs) do cool stuff but
need tons of parameters to do it. We also don’t know how
they really work. Did you know that you can get rid of 95%
of the parameters from the FC layer in an AlexNet with-
out doing much to its classification accuracy? By forming
a low-rank approximation of the FC layer, I show how to
both save memory in implementing prediction and expose
a low-dimensional feature-space that the CNN encodes in-
put images in. By extracting these features and doing ICA,
I find some directions in the space which seem to encode a
set of high-level features that are not associated with any
one particular class.

1. Introduction
Convolutional Neural Networks (CNNs) achieve state-

of-the art performance in a number of real-world tasks, but
the large numbers of parameters required by the highest-
performing networks poses a challenge for embedded de-
vices. To achieve the greatest energy and performance ben-
efits, all parameters must reside on the same chip that does
the forward computations. Even a relatively large custom
chip, implemented in a modern process, which devoted a
large portion of its area to SRAM arrays would only have
tens of MBs of memory. However, for a large, deep CNN,
such as [7], there might be over 100 MB of parameters. Al-
most all of a deep CNN’s parameters are used by the fi-
nal fully-connected layers. In the first section of this re-
port I investigate the effect on classification performance of
two simple parameter-reduction techniques on the second-
to-last fully-connected layer in the AlexNet [6]. Starting
from the pre-trained version of this network, I found that I
was able to reduce the total number of parameters in this
layer by about 95% with only a minimal loss of classifica-
tion by replacing the original weight matrix with a either a
sparse or low-rank approximation. I found similar results
when sparsifying the original matrix by setting small values
to zeros.

Since the low-rank factorization of the matrix does not
reduce the classification performance of the system, this
implies that there is effectively a low-dimensional space
in which all input images are represented before being
classified. Understanding how deep networks encode dif-
ferent image features could do a great deal to demystify
how they function. In the second section of this report
I attempt to gain some insight into the properties of this
low-dimensional space by doing feature extraction on it
and analyzing the resulting data. Unfortunately, the 100-
dimensional space I investigated was still big enough to get
lost in. I observed qualitatively that the independent com-
ponents of the 100-dimensional feature data appear to have
some interesting properties: they seem to represent a set
of higher level qualities associated with no one particular
class, and that arithmetic of independent components can
produce intuitive results. This hints at a hypothesis that the
CNN encodes images as combinations of these high-level
qualities. Coming up with a quantitative metric to evaluate
the strength of this hypothesis proved challenging, however.

2. Background
Although unknown to the author until partway through

the project, the phenomenon that the fully-connected layers
of a deep network may be factorized without harming per-
formance has been previously studied, and appears to be an
area of active research. Most research has focused on do-
ing the factorization at training time, to reap the maximum
benefits of the performance increase, but a naive approach
where the matrix is initialized in factorized form does not
seem to work well in most cases [1]. One counter-example
to this observation is found in [8], where Sainath was able
to train a deep (not convolutional) network for audio pro-
cessing with the final FC layer replaced with a factorized
matrix. In this case, factorization during training caused
no substantial loss in performance. In [1], Denil blames the
extra degrees of freedom in the factorized representation for
the difficulties in training: if W = ABT , then I could also
writeW = (AD−1)(BD)T for any invertible D. Denil sug-
gests the problem may be solved if either A or B is fixed
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before training and goes on to suggest ways of generating
appropriate initialization values using autoencoders. Denil
also observes that there are additional forms of sparsity that
may be exploited in CNNs due the smoothness of the con-
volution filters both in X-Y space and depth: different from
this report’s focuse, Denil applies the low-rank factorization
to the convolutional layers as well as the FC ones. The per-
formance consequences of this optimization for networks
implemented in caffe running on a CPU is explored in [4].
Unfortunately for those interested in embedded hardware,
memory size is not directly studied. With respect to weight
matrix factorization, this is the primary contribution of this
report. I also consider sparsifying the individual entries of
the matrix, forming a sparse-plus-low-rank approximation
of the original matrix.

The fact that deep networks can serve as low-
dimensional feature extractors is hardly unknown either.
Hinton designed a deep (not convolutional) network with a
special structure for this purpose in [2]. Although this net-
work was initialized using RBMs to perform unsupervised
learning on training images and did not use convolution, its
key observations hold true for CNNs as well.

That a low-rank factorization of the FC matrices is possi-
ble and does not harm performance very much is interesting
in its own right from an implementation perspective, but the
fact that such factorizations create a low-dimensional bot-
tleneck seems underappreciated.

3. Approach and Methods
3.1. Parameter Reduction Approach

In the first set of experiments, I investigated the effect of
reducing the number of parameters in the fully-connected
layer on network classification performance. I started with
the pre-trained version of the AlexNet [6] available through
Caffe [5], modifying the ”fc7” layer (the second-to-last
fully-connected layer). The network structure, is shown in
Figure 1. If W is the original 4096 × 4096 matrix of fc7, I
made the following approximation:

Ŵ = Wsp +WLR

Wsp is constructed by simple thresholding of the weights
by their absolute values. Weights whose absolute values fall
below the threshold T are set to zero.

Wspij
=

{
0 |Wij | < T

Wij otherwise

WLR is constructed by first forming the Singular Value
Decomposition (SVD) of W and setting the singular val-
ues corresponding to ranks above R to zero. Intuitively,
the SVD describes how any matrix-vector multiply may be

Figure 1. Network structure used in all experiments, showing the
structure with WLR superimposed over the original structure with
W . Wsp is not represented in the diagram. In the parameter re-
duction experiments, the length R of the central feature was var-
ied. The feature extraction pipeline is diagrammed, showing the
whitening and ICA steps following the initial feature extraction.

thought of as rotation of the input vector, followed by a
scaling, followed by another rotation. By knocking out all
but the R largest singular values, I am essentially enlarg-
ing the nullspace of the matrix: all projections of the input
data except those on the R left singular vectors are crushed.
When these singular values are small to begin with, the ma-
trix is already effectively low-rank and the approximation
will function very similarly to the original matrix.

W = UΣV T

WLR = UΣLRV
T

ΣLRii =

{
0 i > R

Σii otherwise

The number of parameters required to describe Ŵ is
equal to the number of nonzero entries inWsp plus 2 ·4096 ·
R for the reduced-rank versions of the left and right singu-
lar vectors. In a real implementation, storing the position of
each sparse entry also needs to be considered.

3.2. Feature Extraction Approach

In the second set of experiments, I performed feature ex-
traction on the set of 100-dimensional features that results
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Figure 2. KNNs in FIC of several ICs. Each row corresponds to a single IC (of the 91 total extracted). Note how most rows contains
objects of various classes but has a consistent visual theme.

from a rank-100 approximation ofW and tried to gain some
idea of the structure of how the data is encoded to this 100-
dimensional space. My data processing pipeline is shown
in Figure 1. After making the rank-100 approximation of
W , Ŵ = WLR (no Wsp component), I fed in the 50,000-
image validation set from the ILSVRC2012 challenge and
extracted the 100D features, producing F , a 50,000×100
data matrix.

Any single entry of the 100D feature vector does not nec-
essarily have any particular meaning in terms of how infor-
mation is encoded. Many different methods of encoding
information in this 100D feature space could rely on having
meaningful vectors could be mixed together in some arbi-
trary way. Attempting to isolate these ’interesting’ direc-
tions in the 100D feature space is an instance of the blind-
source separation problem. To perform blind-source sepa-
ration, I first mean-centered and performed PCA on the data
as a precursor to whitening it. I then performed ICA on the
whitened data using the FastICA [3] implementation avail-
able in Python’s ’scikit-learn’ package. FastICA attempts
to find projections of the data that have kurtosis most dif-

ferent from that of a Gaussian distribution. This leverages
the Central Limit Theorem: sums of independent random
variables tend towards a Gaussian distribution. By mini-
mizing one measure of the Gaussian-ness of a given pro-
jection, FastICA thus attempts to pull out projections along
with the data is not independent. The algorithm is not de-
terministic: in order to ensure that the independent compo-
nents that I produced were robust, I ran FastICA with dif-
ferent random initializations and threw out the ICs that did
not appear multiple times, using the absolute dot of the nor-
malized mixing vectors, |mT

i mj |, as a measure of similarity
(FastICA does not yield information about the sign or mag-
nitude of the components it produces, only their directions).
In practice, most of the ICs returned by any single run of
FastICA appeared in the set of repeated directions. This
technique produced a 50,000×C data matrix, FIC , where
C is the number of repeated directions. FIC is F projected
into the basis defined by the IC’s mixing vectors, M =
[m0,m1, ...,mC ]T . Depending on whether C is greater or
less than 100, different pseudoinverses may be applied to
solve FT = MFT

IC ⇒ FT
IC = FTM

†. In my case, C was
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slightly less than 100, so I performed Least Squares with `2
regularization: M† = (MTM + λ2I)−1MT , minimizing
||MFT

IC − FT ||22 + λ||FIC ||22.
A totally unguided exploration of this (still relatively

large) feature space is challenging. Unless the data has
some obvious structure, learning how information is en-
coded feels like a blind search. Fixing a hypothesis (even
a naive one) can at least suggest a more principled set of
experiments. A binary feature vector with K entries can
encode 2K different values. If the ICs represent a suffi-
ciently rich set of qualities that images might possess, it is
possible to imagine that the 1000 different classes known
to the AlexNet are encoded in a similar fashion. Under this
hypothesis, each image’s representation in FIC describes
which IC qualities are mixed in what proportions to describe
the image. The network has all the machinery necessary to
implement this type of encoding, so I set out to design some
experiments to collect evidence for or against my simple hy-
pothesis.

A necessary intuitive aspect of the hypothesis is that the
vectors encode some recognizable concept along each IC.
To get a sense for what each IC might be encoding, I per-
formed K-Nearest Neighbors (KNN) in FIC , displaying the
images whose encodings in had the smallest `2 distance to
each IC where I characterized the ICs each as being one
row of C × C identity matrix, scaled by the mean norm of
the rows of FIC (my ICs have the average feature vector
length), as well as the the opposite of that vector. I then
manually assessed whether each row had a coherent theme
on either direction.

Since the number of the number of classes is very small
compared to the total number of possible binary codes, it
might be reasonable to expect that FIC would be relatively
sparse. In general, projecting the data onto the ICA should
result in a more sparse encoding of the space than if the
signals are initially randomly mixed: if F contains inde-
pendent signals mixed in some arbitrary way FIC should
certainly be more sparse than F . To assess whether this is
the case, I took the absolute values of both the whitened
version of F and FIC , sorted each row, then took the mean
of all columns. Plotting these (rescaled) component decay
profiles allows a comparison of the relative sparsity of each
encoding.

Assuming that each image class requires the addition of
several IC vectors to describe it completely, the hypothesis
suggests that the ICs would not share the same direction as
a collection of feature vectors that correspond to any partic-
ular class. To evaluate this, I tried to compare the ICs with
the cluster centroids output by K-means, but K-means did
not appear to be very successful: no metric of the clustering
quality indicated a very good clustering. I also tried an-
other approach relying on computing dot products between
feature vectors. Assuming that each feature vector is sur-

rounded by a cluster of features of the sames class, I com-
pared the counts of large positive dot products between a
randomly chosen feature vector and all other features. To
keep the scales comparable, I normalized each feature to
unit length. This approach hence discards all information
about the length of feature vectors, implicitly assuming that
all information is encoded directionally. Doing this sev-
eral times might give you a relative idea how clustered one
data set is compared to another. I used the dataset of points
uniformly randomly distributed on the unit-hypersphere as
a baseline reference. This approach gives very hard-to-
interpret results when the data is not very white, however.
Arbitrarily whitening the data also does not seem correct.
Given the large number of assumptions inherent to this ap-
proach (clustering, directional encoding, requirement that
data be whitened), I similarly did not draw anything con-
clusive from this line of experimentation.

Finally, for the hypothesis to be correct, it should be pos-
sible to take random images’ encodings in FIC and visual-
ize both the image and the KNNs of the top ICs that make
up the FIC encoding. Conversely, it should be possible
to add ICs together to synthesize image codes, visualizing
the KNN of the resulting sum. This line of experiments is
strictly qualitative, unfortunately, as it relies completely on
human judegement: both correct interpretation of the ICs’
associated image qualities and the degree to which those
qualities are present in the reference image/set of results
from KNN.

4. Results
4.1. Feature Extraction Results

4.2. Parameter Reduction Results

n the first set of experiments, I studied the combination
of two ways of sparsifying the weights in the fc7 layer of
my AlexNet, starting from pre-trained weights. I approxi-
mated the originalW as Ŵ = Wsp +WLR. Figure 3 shows
the singular value spectrum and the weight histogram of the
original W . Figure 4 shows the effect on classification per-
formance and number of parameters when the number of
sparse entries in Wsp and the rank of WLR are varied in-
dependently. From the singular value and weight profile
alone, it is surprising that sparsification and rank reduction
can be applied so aggressively without damaging perfor-
mance. The matrix does not appear to be effectively low
rank (although adding IID Gaussians the entries of a low
rank matrix can probably produce SV profiles like the one
seen here), similarly the shape of the distribution of weights
does not immediately suggest any significant threshold for
weight sizes. With rank reduction alone, it was possible to
reduce the numbers of parameters by about 95% while only
sacrificing about 3% of top-5 classification accuracy. Spar-
sification appreared even more effective, allowing a simi-
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Figure 3. Left: singular value spectrum of original W weight matrix taken from fc7. Right: histogram of weight values. At first glance,
the matrix doesn’t seem to be effectively very low rank, and doesn’t seem to have any obvious thresholds in the weight magnitudes.

Figure 4. Left: top-5 classification accuracy as a function of number of parameters used in the Wsp and the rank of WLR. Lighter squares
indicate higher performance. Note the log-scale used on either axis. Right: for the same network configurations, the fraction of original
parameters that remain in the network. Darker squares indicate a lower fraction of parameters remaining. For not-very-sparse or low-rank
combinations, the approximation can actually require more parameters than the original matrix, hence the range of the scale. Parameter
reduction works surprisingly well.

lar reduction in parameters while incurring an even smaller
loss of performance, but it is important to note that the real-
world memory footprint is likely to be higher than the pa-
rameter count suggests (because of the need to store the
indices of the sparse entries). Most computer hardware is
also not nearly as amenable to working with a sparse ma-
trix representation as it is with a dense one. The low-rank
factorization avoids these problems as it simply consists of
two dense matrices.

In these experiments, I focused on studying the con-
sequences of the low-rank matrix factorization studied in
the first experiment. While both forms of parameter re-
duction are effective, rank reduction clearly exposes a low-
dimensional feature space that the network operates in: all
of the classification power of the network must be flow
through the R-dimensional bottleneck between the left and
right singular vectors.

I first performed whitening on the extracted features
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Figure 5. Eigenvalue spectrum of mean-centered F . There is a
single large eigenvalue which happens to be in the same direction
as the mean.

F . The eigenspectrum of a mean-centered version of F
is shown in Figure 5. There is one very strong eigenvalue
which also aligns with the mean of the data. I am not sure
what to make of this, but I include the observation for com-
pleteness. It could be that there is simply a set of outliers
very far from the rest of the data. Walking along this eigen-
vector and visualizing the KNN images did not result in any
epiphanies.

After performing the concensus of FastICAs approach, I
visualized C = 91 independent components obtained. For
almost all of the ICs, the nearest neighors of one of the di-
rections Ii or −Ii had clear common properties while the
other direction’s nearest neighbors seemed to have nothing
in common. I manually decided which direction was correct
(and picked some of my favorite ICs) to create Figure 2. The
complete visualization of all ICs is included in the supple-
mentary material. The visualizations in the supplemental
differ slightly from those in Figure 2 because the supple-
mental comes from ”concensus of FastICAs” while Figure 2
comes from a single run (the figure was generated before I
switched to the new approach). I also used a different length
for the IC vectors for each figure when computing KNN im-
ages. Fortunately, the visualized image types are fairly ro-
bust to each of these effects: you should be able to match
each image in Figure 2 with a row in the supplemental vi-
sualization. The supplemental visualizations are also anno-
tated with the [(network’s classification)(correct class)] for
each image. Interestingly, the common properties of a given
IC’s closest images aren’t associated with a single class: im-
ages from many different classes (both according to the net-
work’s predictions and the actual labels) are present in each
set of KNN images.

Figure 6. Scaled mean-sorted-absolute weight profiles for
whitened F and for FIC . ICA seems to have increased the sparsity
of the encoding.

The sparsity of FIC as compared to that of F by the
process described in methods is shown in Figure 6. As ex-
pected, the ICs form a basis that leads to a more sparse
reprentation, suggesting that some unmixing must have
been performed.

Some examples of synthesizing images from their IC
components is shown in Figure 7 The reader is encouraged
to run the code provided in the supplemental (it’s fun!).
In the case of synthesis, remember that the visualization
is based on KNN of items that are in the dataset. Images
corresponding to some given combination of ICs may sim-
ply not exist in the dataset. When decomposing images, the
two largest independent components usually made a lot of
sense with respect to the image. For example, a necktie with
a very fine regular pattern, partially curled, was composed
mostly of the ”snake/squiggle” IC as well as the ”rough tex-
ture” IC.

5. Conclusion

In this report, I began by studying the effect on classi-
fication performance of reducing the number of parame-
ters in one of the final FC layers. Both the low-rank and
sparse approximations of the weight matrix (or a combina-
tion of those two approaches) proved very effective, sacri-
ficing little classification performance while allowing for a
great deal of memory savings. The low-rank approximation
has the interesting corollary of exposing a relatively low-
dimensional feature space that must encodes the network’s
representation of each image. My focus then turned towards
trying to understand this encoding. Without any particu-
lar hypotheses about how the information is encoded in the
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Figure 7. Synthesis of images with IC vectors. Top: the ”black and
white” IC is added to the ”human faces” IC to produce a vector
whose KNNs are all black and white portraits. Bottom: the same
”black and white” vector is added to one of the ”birds” vectors to
produce a vector whose first nearest neighbor is a black and white
picture of a bird.

space, PCA and ICA offer two ways of getting some handle
on the structure of the extracted features. Visualizing the
independent components yielded directions in the feature
space that seemed to encode high level qualities that images
of several different classes may possess. At this point, I
made a simple hypothesis about how the encoding might be
done in something resembling a binary fashion in order to
guide my experiments. Unfortunately, I don’t think I was
able to prove anything too concrete. The most solid finding
to come out of this second line of investigation is probably
simply that the ICs of the feature space are significant in
some way.

There are a number of things that I would have liked to
have spent more time on: specifically, I would have liked to
have produced more quantitative metrics to explain the low-
dimensional feature space.. Understanding how ICA was
transforming the feature space is probably one of the higher
priorities. The ICs produced by FastICA are not always the
most intuitive (spending some time with ICA in 2- or 3-
dimensions on sythetic data can lead to head-scratching).
While the ”FCI is more sparse than F ” result does some-
thing to suggest that ICA might be working as expected,
it’s far from conclusive. The ”IC vectors vs cluster direc-
tions analysis” that I attempted was supposed to put some

quantitative metric on how ICA might be working in one
particular respect, but both versions of the analysis rest on
shaky assumptions and I didn’t trust any of the results in
the end. Another good test for the ”binary code” hypothesis
would have been to see to what extent FIC occupies a single
hyper-quadrant. Under the hypothesis, a negative IC vector
is not supposed to have any particular meaning (although if
the set if ICs was an overcomplete basis for the space–not
the case in my experiments–it could probably be useful).
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