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Abstract

This project is an attempt to apply the power of neural

networks to detect scenes. The experiments make use of MIT

Indoor 67 and SUN 397 datasets with an aim to see how far

CNNs can match the current industry standards in scene

recognition. Techniques such as fooling the CNN helped

boost performance by reducing confusion between the most

confused pairs of classes. In addition, the project com-

pares the difference in properties between indoor-centric

vs outdoor-centric datasets, which are responsible for the

marked difference in performance on similar CNN archi-

tectures.

1. Introduction

A real time, robust scene recognition engine would be
a valuable tool for digital marketers, given the increasing
graphic media content on the Internet. For instance, digi-
tal marketers e.g. Pinterest/Instagram would be interested
in knowing a consumer’s favorite hangout spot e.g. a bar,
bowling alley, bakery etc based on his/her Instagram photo
uploads. This information would help an advertiser target
his/her clients more accurately thus saving money.

1.1. Dataset

The project makes use of subsets of MIT Indoor67 and
SUN 397 datasets.

1.2. Background

We have had state-of-the-art performance on a model
built by MIT researchers based on the Places 205 Dataset,
which comprises of 2.5 million images[3]. They used a hy-
brid of techniques to achieve about 70.8% accuracy. One
of the important works in scene recognition was aimed
at building a huge dataset, the Places dataset with over 7
million images [3]. They outperfomed prior achievements
based on fine-tuning object-centric trained models (on Im-
ageNet). The creation of scene-centric datasets has spurred

interest and growth in scene recognition. This paper is at-
tempts to uncover the differentiating factors between in-
door and outdoor scenes. The SUN 397 and Indoor 67
models in these results are built from the scratch, as op-
posed to fine-tuning pre-existing models from out there.
One of the biggest efforts involved understanding the na-
ture of both outdoor-centric and indoor-centric datasets us-
ing supervised learning methods, and applying techniques
to boost performance.

2. Technical Approach
The problem of identifying a scene can be approached

in two ways [3].

1. Training the CNN on an object-centric dataset
Indoor scenes contain objects e.g. a casino would con-

tain chairs, desktop, bottles and so on. Therefore, the task of
indoor scene recognition is at least as hard as object recog-
nition. Figure 8 shows the dataset under SVD using PCA.

2. Training the CNN on scene-centric dataset The SUN
397 Places dataset consists of 397 scenes. The SUN 397
subset consisting of outdoor scenes that was used for the
experiments is also referred to as ’outdoor-centric dataset’
in this paper.

I expected to find performance patterns similar to Bolei’s
work. This would imply that their results support our claim:
that a pre-trained model of outdoor scene-centric data pro-
vides at least as good a performance on indoor scenes after
fine-tuning - saving much training time. The second claim
is that transfer learning from an indoor model to an outdoor
scene-centric dataset does not yield an equally good match
in performance. The results I found seem to match this de-
scribed pattern, which also is evident in the results obtained
by the MIT experiments (See MIT results on page 5).

2.1. Results from my experiments

CNN MIT Indoor 67 SUN Dataset
Indoor 67 Trained CNN 43.89 58.33
SUN 397 Trained CNN 42.09 67.02
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Figure 1. MIT Indoor67 Dataset. Graphic courtesy of Prof. Antonio Torralba, MIT [1]

Figure 2. Using Convnets: Two Layer CNN on MIT Indoor 67

2.2. Convolutional Neural Networks for Scene
Recognition

Convolutional neural networks help us simulate human
vision, which is amazing at scene recognition. They
enforce local connectivity between neurons in adjacent
layers[2]. Thus, CNNs exploit spatially-local correlation.
The neurons are replicated across the visual space so that
features can be recognized regardless of position in visual
field. Another effect is that the weights are shared. Weight
sharing increases efficiency by decreasing the number of
learnable parameters by gradient descent [2].

3. Supervised Learning methods for Data Un-
derstanding

Supervised learning methods turn out to be essential
tools for data understanding. For this experiments, the sim-
pler supervised learning methods used: KNN, Random For-
est, SVM had a low accuracy of about 20%. Before classi-
fication, the data is first transformed to SIFT space. Each

image has varying number of keypoints, that were averaged
to return a single image descriptor. All images in SIFT
space are mean-centered. SIFT keypoints do not pay atten-
tion to spatial and local correlation. Rather, the images are
converted into visual words. But the results are still want-
ing, we can do more, by taking into account spatially-local
correlation, therefore, CNNs are bound to outperform these
simpler methods.

Supervised machine learning algorithms were crucial to
data understanding. The insight gained helped guide the im-
age pre-processing steps, and informed the decisions made
for dataset augmentation to boost performance. (Noise per-
turbation improved performance - look at the last section to
see this)

For instance, using the SVM, I was able to notice that
indoor recognition dataset had a lot of interclass correlation.

Consider the confusion matrix in figure 3 above, ob-
tained by first extracting the SIFT keypoints of the images
and using an SVM classifier.

The data in SIFT space is projected into PCA space (Fig-
ure 6)

The outdoor scene dataset is quite noisy (check out the
mean-centered image in figure 4) and correlated as well [fig.
5]. These factors are contributing causes to loss in accu-
racy/class differentiation.

Consider also the plot of the SIFT features after dimen-
sionality reduction, projected onto PCA space.

The data seems quite correlated, and it was quite distinct
from the outdoor dataset under the same transformation i.e.
svd and projection in PCA space

3.1. Feature Importance Using Random Forests

Understanding relative feature importance was crucial to
understanding the problem much better. To do this, I extract
the SIFT features and obtain images representation in SIFT
space. Fitting 250 trees to the transformed dataset produces
a ranking of the most important features that contribute to
the classification of the dataset. The relatively uniform im-
portance of all the top 20 features in the indoor dataset is

2



Figure 3. Confusion Matrix from Running an SVM on data in SIFT
space

Figure 4. Mean centered image: MIT Indoor 67

distinct from the fairly non-uniform importance of features
in the outdoor-scene data. Look at figures 7 and 10 to see
the difference.

I fit 250 trees to both datasets so as to get an unbiased
comparison of the two datasets.

4. Classification Pipeline
The first part of the classification pipeline consisted of a

two layer convolutional neural network, with dropout, max
pooling for shift invariance, and ReLu to ensure that the
network learns the weights well and the other layers - fully
connected and input layers.

The first thing that I did was to resize all my images to
64 x 64. The two layer network was effective for extracting

Figure 5. Covariance Matrix: MIT Indoor 67

Figure 6. MIT Indoor 67 SIFT keypoints in PCA space

Figure 7. Random Forests Top 20 Features: MIT Indoor 67

some of the key components of the images, even though it
was not as fine grained as possible due to the noisy nature
of the dataset. This was evident from the noisy/grainy look-
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Figure 8. Accuracy and Loss History: Training Convnet on MIT
Indoor 67

Figure 9. SUN 397 Subset: Filter Plot

ing filters that were obtained after training for about 16-20
epochs.

Loss History, Training Accuracy vs Validation Accuracy
Plot

4.1. Results from my experiments

CNN MIT Indoor 67 SUN Dataset
Indoor 67 Trained CNN 43.89 58.33
SUN 397 Trained CNN 42.09 67.02

5. Analyzing a Subset of Outdoor Scene-
Centric Dataset from SUN 397

How different are outdoor datasets from indoor datasets,
so that they perform better?

The histogram in figure 10 shows the relative feature im-
portance of the outdoor-scene centric dataset drawn from
SUN 397.

The SUN-397 dataset showed better segmentation after
mean centering the data [fig 12] than the indoor dataset as
you can see in figure 4.

Consider the plot of the SIFT keypoint features of SUN
397 dataset, under SVD and projection into PCA space [fig

Figure 10. Fitting a Random forest of 250 trees to SUN 397 dataset

Figure 11. SUN 397 features in PCA space after dimensionality
reduction using SVD

11], we see a much better de-correlation in space, which
means that a multi-class SVM classifier would do better on
it. In terms of CNNs, it we can say that the better segments
obtained after mean centering the image make it easier to
learn robust weights and features for classification in the
case of outdoor scenes.

The PCA plot shows that the data is less correlated com-
pared to the plot of the indoor feature dataset undergoing
the same transformation [fig 6]. But again, there isn’t much
difference in terms of the feature importances, when we fit
both datasets, of about the same size, with 250 trees. The
slightly visible difference is that the indoor dataset top 20
features have about the same importance relative to the top
20 features in the outdoor dataset.

Training a two layer CNN on the SUN dataset using the
same architecture as before. A much better accuracy of over
67% is achieved within a few epochs of training [figure 13].

6. Transfer Learning
Having obtained great results from training on SUN 397,

I sought to attempt boosting performance on the MIT Indoor
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Figure 12. SUN 397 sample image

Figure 13. SUN 397: Loss History and Accuracy

Figure 14. Transfer Learning: From outdoor-centric to indoor-
centric datasets

dataset, or at least, reducing the training time by initializ-
ing the first layer weights using weights from the scene-
centric trained CNN model. I discovered that the training
time reduced significantly leading to equally good results
compared to the model that was trained on the MIT Indoor
dataset. This showed that a model trained on a good out-
door dataset provides great highlevel features from which
to fine-tune in order to build a classifier for indoor scene
recognition.

Results from Experiments:

Figure 15. Cosine Similarity of feature vectors: Outdoor-centric
vs indoor-centric dataset

CNN MIT Indoor 67 SUN Dataset
Indoor 67 Trained 43.89 58.33
SUN 397 42.09 67.02

6.1. Feature Similarity Between Indoor and Out-
door Scenes

To find the similarity between the feature set in the two
datasets, we first extract the SIFT keypoints from the im-
ages, and use random forests to obtain the relative impor-
tance of the SIFT keypoints/features in classifcation. Hav-
ing obtained the most important features for classification
in the form of feature indices, I used the cosine similarity
as a measure of similarity between the top 20 features from
both datasets (figure 15).

The value was 0.604, implying a high level of similarity
between the two feature sets, but the difference, as we’ve
seen, causes much difference.

This promixity in feature space is due to the largely sim-
ilar high level structures that are common in both. The per-
formance of the CNN with transfer learning does not exceed
the previous bench mark at all, but helps the training to run
much faster to converge to about the same result as before.

The MIT dataset also shows that the performance is just
about the same when transfer learning from a less complex
model to a more complex model.

Results from MIT CNN models:

CNN MIT Indoor 67 SUN Dataset
Places CNN 54.32 (BM 47.2) 68.24 (BM 66.87)
ImageNet-CNN 42.61 (BM 47.2) 56.79 (BM 66.87)

(BM value) indicates the benchmark for each datset at
the time that the MIT team performed their experiment.
The architectures for the two convnets in the MIT exper-
iment were the same, so the results are comparable: we
cannot attribute superior performance to differences in ar-
chitecture, rather, rather, it is a result of the nature of the
weights learned.

6.2. Indoor Scene Recognition at least as hard as
object recognition tasks

From the work done to understand the properties of the
indoor scenes, it became clearer that indoor scenes are of-
ten charactized by relatively more clutter and are generally
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quite noisy. Indoor scenes have a greater level of complex-
ity than outdoor scenes that needs to be learned properly:
not too specific - leading to overfitting, or too generic, lead-
ing to underfitting. This complexity, I’d argue, makes them
at least as hard as object recognition. With this claim in
mind, I’ll quickly touch on the MIT experiment results to
help clarify and provider further evidence, besides my own
results, that indeed outdoor to indoor transfer learning pro-
vides about the same results, if not better, but the converse
is not true. Look at the MIT results to the right of page 5
above.

The CNN trained on scene-centric data (Places CNN),
is used for transfer learning to the MIT Indoor 67 dataset,
achieving 2% higher than the benchmark. On the other
hand, using the ImageNet trained model, which in this case
represents a slightly simpler version of an indoor model -
to the places dataset - yields a reduction in 5% from the
bench mark. This implies that the hypothesis learned from
an indoor model is not well generalizable and good enough
model for the outdoor scene - which is simpler and less
complicated[3].

Transfer learning yielded a 58.3 % accuracy, down from
the original 67% obtained from training the model from the
ground up using the same parameters. I used fewer epochs
but final accuracy is about 8.7% lower than expected. This
reduction is expected if we go by the observations from the
results in the MIT paper.[3]

6.3. Understanding the Confusion Matrix for SUN
397 Dataset

Consider the confusion matrix of the SUN 397 dataset
[fig. 16]. As you can notice, pairwise confusion counts
are much lower than the Indoor 67 dataset. Classes 0 and
2 are the most confused classes with a count much lower
than the most confused classes in Indoor 67 dataset. There
is 4 times as much confusion in the Indoor case versus the
outdoor case when you compare the most confused pair of
classes in the two datasets.

7. ’Ethical CNN Fooling’ for Performance
Augmentation

This section is an attempt to take advantage of the vul-
nerability of CNN to fooling, so as to minimize interclass
confusion. To do this, we find the pair of classes that are
most confused, and build a fooling image, with the mean
image of the misclassified images as the start. In this case,
we want to fool the CNN to boost and not break perfor-
mance, hence the use of the term ’ethical’.

From the subset of the data used, the bar and the casino
were the most confused classes [figure 17].

In their paper on fooling deep neural networks, Nguyen,
Anh et. al showed that it’s quite easy to construct an image

Figure 16. SUN 397 Dataset Confusion Matrix

Figure 17. MIT Indoor 67: Bar and Casino most confused

that fools the neural network [5]. One of the experiments
involved augmenting the confused image classes with some
noise so as to reduce confusion and boost performance. It
did result in improved results by only dealing with the two
most confused classes - by adding some noise to the casino
class images. Creating the fooling image is an optimization
problem - done using gradient descent the starting image
as the average of the misclassified images. The goal is to
’fool’, or encourage the convnet to tweak the weights so
that the starting image is correctly considered a casino with
reasonably high confidence of 0.70. This value is arbitrary
but convenient: we add just enough noise to gain enough
confidence, not too little to produce little change, and not
too much to visibly or excessively perturb the look of im-
ages.
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Figure 18. Noise Added to Minimize Confusion between Casino
and Bar

Optimization problem [5]:
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(Nguyen et. al)
Suppose that p(x = y | m) is the probability that the

input x is assigned the label y under the model m. We
then specify a desired *confidence threshold* t for the en-
gineered image, and stop optimization when p(x

f

= y |
m) >= t [5]

7.1. Results of ’Ethical CNN Fooling’

Adding the noise : 46.40% accuracy
Without the noise: 42.80% accuracy
Thus, ’ethical’ fooling can be an essential tool to boost-

ing performance on the most confused pairs of classes.

8. Conclusions
Transfer learning to an indoor dataset speeds up training

and gives about the same performance. A model obtained
from a less complex dataset works as a good starting point
for the indoor scene dataset, converging quickly and giving
equally good performance as full training(+/- 2%) differ-
ence in performance. But there is the possibility of achiev-
ing better results with more fine-tuning of the pre-trained
model.

Ethical fooling of the CNN, using the optimization out-
lined by Nguyen et. al is a useful tool to reduce confu-
sion and boost performance in indoor scene recognition. It
helped boost performance by about 4%

Model trained on indoor-centric data causes reduction
in performance on an outdoor scene - thus there is need to
come up with inexpensive techniques to lessen the complex-
ity of this model. MIT’s result, as well as mine, were many

points (8.7%) below the performance attained by training
from the ground up.

9. Future Work
It’d be great to work on model ensembles, combining in-

door, outdoor, as well as perturbing most confused classes
with varying amounts of noise with an aim to augment per-
formance.
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