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Abstract

Given an image from a video, we learn features in a su-
pervised manner using deep networks and detect ants in a
crowded environment. In order to track the motion of an
object in a video, it is essential that we are able to local-
ize and detect most of these objects in every video frame. In
this paper, we propose an architecture for our convolutional
neural network using which we achieved a precision of 61%
and a recall of 50% in detecting ants in the video frame.

1. Introduction
Convolutional Neural Networks has recently achieved

great success in computer vision problems. It has been
applied to object classification as well as detection. We
apply both of these to ant colonies. This problem is difficult
as our aim is to find most of the ants in an extremely
crowded situation.

Our data-set is composed of the video captured in
Professor Gordons Lab at the Stanford Biology Depart-
ment. Their lab works with tracking the ants to study their
communication system and other behavior. Each frame is
of size 1920x1080. Until now, manual labeling of ants was
done by using linear interpolation techniques to find tracks
between two clicked ant positions which might not be at
consecutive frames. This task was taking too long and thus
there is a requirement for automatic detection techniques to
speed up the process. Thus, our problem is to solve this by
finding most of the ants in the video frame. Once we locate
the ants, we can track their movement. The video data-set
was partially labeled manually which served as our training
data.

Our approach to solving this problem was to use the
features of ants that a human looks for, to identify them. It
becomes difficult even for a human to identify all ants. The
characteristics we look for are color, shape, and texture.
However, its also the movement of an ant, which makes
us realize that the previously undetected object is actually

Figure 1. With ants

Figure 2. Without ants

an ant. Hence, our initial approach towards the problem
was to also take advantage of having a video with a static
background rather than just an image.

2. Related Work
Work by Pierre et. al.[1] addresses the similar problem

by exploring the entire image by densely running the net-
work at each location and at multiple scales. This approach
yields more significant views to vote which improves its ro-
bustness. They also generate object bounding box by com-
bining the regression predictions along with the classifica-
tion result at each location. Similar problem has also been
addressed by Girshick, Ross, et. al.[2], the tool is also called
rCNN. However, to the best of our knowledge, this is the
first work to look at images with very high object densities.
In our application, every video frame contains around 100
ants. Some examples of training images are shown in Fig-
ure 1 and 2.

3. Technical Approach
The following describes the approaches taken by us, in

order to improve performance.

3.1. Using Background Subtraction

In order to take an advantage of having a video with a
fixed background, we use background subtraction, which is
a widely used image processing technique to detect mov-
ing objects in videos from a static camera. Using this, we
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Arch. conv1 conv2 conv3 conv4 full5 full6 full7
CNN-F 64X11X11 256X5X5 256X3X3 256X3X3 64X8x8 2X1X1 Softmax

st.1, pad 5 st.1, pad 2 st.1, pad 1 st.1, pad 1 dropout dropout
LRN, x2 pool LRN, x2 pool

Table 1. Pre-trained VGG’s CNN-F Architecture[3]:
¯

Each architecture contains 5 convolutional layers (conv 14) and three fully-connected
layers (full 57). The details of each of the convolutional layers are given in three sub-rows: the first specifies the number of convolution
filters and their receptive field size as num x size x size; the second indicates the convolution stride (st.) and spatial padding (pad); the
third indicates if Local Response Normalization (LRN) is applied and the max-pooling downsampling factor. For full 13, we specify their
dimensionality, which is the same for all three architectures. Full5 and full6 are regularized using dropout, while the last layer acts as a
multi-way soft-max classifier. The activation function for all weight layers (except for full7) is the REctification Linear Unit (RELU).

are able to differentiate the foreground from a background
in a video frame. A background-subtracted (BS) image is
shown in Figure 3. Baseline result is achieved by forming
bounding boxes around the ants using BS as shown in Fig-
ure 4. To improve results, we proceeded on by applying
BS image as one of our channels along with RBG channels.
On training a 5 layers CNN using this four-channel image
gave reasonable results. However, results were not good in
terms of number of ants predicted i.e. recall although our
precision was good. Possible reason for this is because of
the ants which are still in the video because of which it is
also being considered as our background. The other three
channels indicate shape and color as an important feature
for there being an ant. Hence, BS image does not help in
training the CNN as it gives extra information for training
images in which ants were moving, for the rest it doesnt.

3.2. Ensemble Technique

Hence, we removed the fourth channel BS image and
trained our CNN using only the RGB image. We then used
five layers CNN and started our experiments and we ob-
served results better than the previous values. Following
this, we then decided to use an ensemble technique of using
multiple CNNs in order to decide a presence of ants in a bet-
ter manner. In order to get different features, we used CNNs
of different number of layers. Thus, we used CNNs having
5,6 and 7 layers and formed an ensemble using these.

3.3. Non-Maximum Suppression

From the above-described ensemble technique, our re-
call had increased but the precision decreased as even the
adjacent image blocks around the ant, which had a part of its
body, were being detected as ants. Thus, in order to improve
the precision, we apply Non-Maximum Suppression (NMS)
technique[3], in order to remove most of the false positives.
NMS is used after the detection made by the CNNs. This
algorithm has the effect of suppressing all the image infor-
mation that is not part of local maxima. Thus, with this
architecture, we observed better precision and recall. The
block diagram of the architecture is depicted in Figure 5.
The architecture has been discussed in more detail in the
experiment section.

3.4. Transfer Learning

We also applied transfer learning from the CNN-F(CNN
Fast) VGG model[4], by taking the first 4 layers, which ex-
tracts the essential feature. The architecture has been shown
in table 1. This technique doesn’t give better results. Re-
sults are discussed in detail, in the next section.

3.5. Data Augmentation

It was also challenging to have the labeled data. Hence,
we used data augmentation techniques, such as horizontal
flip to all training data, in order to improve the training of
our CNNs, which also improved our results.

4. Experiments
As described in previous sections, we were using convo-

lutional neural networks to detect ants in the video frames.
It is a very complicated scene with high object density. This
algorithm can be generalized to any kind of detection and
localization of fixed sized objects in highly crowded scenes.

4.1. Formation of Training images

For our simulations, we use MatConvNet [5] and
obtained some manually labeled frames as our training
data-set. Each video frame in this manually labeled data-set
did not have all the ants marked, but only the ones that
had been clicked on. Rest of the ants were a part of linear
interpolation in the tracking step. So we decided to use
40x40 blocks around these clicked points as the positives
in the training set. 40x40 pixel size was decided as it was
about the size of an ant. Then to get the negative training
set, we had to use background subtraction results. We
used only the regions with a high probability of being
a background. Thus, we obtained about 8000 positive
training set and 40000 negative training set. Out of these
48000 images, 10000 were randomly chosen to form the
validation set and the rest formed the training set. We also
tried to manually correct the background detected using
background subtraction, to improve our results. We did
this to remove ants that were not moving and hence being
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Figure 3. Background Subtracted Image

Figure 4. Output using background subtracted Image

detected as background by the background subtraction
algorithm.

4.2. Performance of different architectures

Using this training set, we carried out a number of
experiments and tried out a number of different CNN archi-
tectures. Using the ensemble of 3 different architectures,
we achieved the best results as yet. More information about
these three architectures are given is table 2. We trained
our CNNs along with dropout with a probability of 0.5.

The error plots corresponding to each of the above
architectures are shown in figure 6, 7 and 8. From these
plots, we observe there is no over fitting. Also, we tried
out different block sizes other than 40x40 like 20x20 and
60x60. The comparisons are given in table 3.

We then also experimented using pre-trained models

Figure 6. Energy and Error vs Epoch plot for architecture 1
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Figure 5. Block Diagram for the architecture

Layer Architecture 1 Architecture 2 Architecture3
Number

1 Conv-Max-Relu Conv+max+relu Conv+max+relu
32X5X5 32X5X5 32X5X5

st. 1, pad 2 st. 1, pad 2 st. 1, pad 2
3x3pool 3x3pool 3x3pool

2 Conv-Max-Relu Conv+max+relu Conv+max+relu
32X5X5 32X5X5 32X5X5

st. 1, pad 2 st. 1, pad 2 st. 1, pad 2
3x3pool 3x3pool 3x3pool

3 Full Conv+max+relu Conv+max+relu
64 Channels 64X5X5 64X5X5

dropout st. 1, pad 2 st. 1, pad 2
3x3pool 3x3pool

4 Full Full Conv+max+relu
2 Channels 64 Channels 64X5X5

dropout dropout st. 1, pad 2
3x3pool

5 Softmax Full Full
2 Channels 64 Channels

dropout dropout
6 - Softmax Full

2 Channels
dropout

7 - - Softmax
Table 2. CNN Architectures used for Ensemble method

from VGG. We used the first four layers of the VGG’s
CNN-F model. While keeping the learning rate for these
four layers to be zero, we trained the FC layers. Although,
the results from this architecture was not better than the
fully trained ensemble architecture. This might be possible
as the images from ImageNet are not similar to the images
from our training set.

To test the output of our results, we used a frame of the
video that had not been used as the training image. This
served as our test image and we manually labeled all the

ants. Then we segmented the image into 40x40 blocks and
used the trained neural network to classify each block as
an ant or not an ant. We used the manually labeled points
as the ground truth and treated the algorithm output points
that are closer to the ground truth than a specific threshold
to be the correct output. So we compute the false positives
and the true negatives from which we are able to compute
the precision and recall.The precision and recall values of
some of our trained networks are given in table 4.The output
computed a test image is shown in Figure 9.

Based on the results above we have been able to achieve
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Architecture Epoch Window Size Error(%)
[Conv-Max-Relu]X3-[full]X2-softmax (6 layers) 5 40X40 5.5
[Conv-Max-Relu]X2-[full]X2-softmax (5 layers) 5 40X40 5
[Conv-Max-Relu]X4-[full]X2-softmax (7 layers) 20 40X40 2.5
[Conv-Max-Relu]X3-[full]X2-softmax (6 layers) 22 20X20 6.5
[Conv-Max-Relu]X3-[full]X2-softmax (6 layers) 5 60X60 1.5

Table 3. Comparison between different architecture and block sizes

Architecture Precision(%) Recall(%)
5 Layer 49.35 44.19
6 Layer 49.33 43.02
7 Layer 57.58 44.19

Ensemble of all above 60.56 50.00
Transfer Learning from VGG 41.03 18.60

Table 4. CNN Architectures used for Ensemble method

Figure 7. Energy and Error vs Epoch plot for architecture 2

a precision on 61% and recall of 50%. The errors in the
output of this algorithm, can be manually corrected and then
the results can be passed on to the tracking framework.

5. Conclusion

This work describes a complete pipeline for the detection
and localization fixed size object detection in very crowded
environment.

We have tried different architectures, to track ants in a
very crowded environment. This can be generalized to any
small object such as humans from a video captured by a
quadcopter or a surveillance camera. Through the course
of trying out these different algorithms, we learned the pros
and cons of depth of a neural network, data augmentation,
hyper-parameters etc. We also generated the training data-
set and learned the importance of the quality of the data-set
on the final accuracy.

Figure 8. Energy and Error vs Epoch plot for architecture 3

We now intend to develop a full framework, where we
use our architecture to detect the ants and then after man-
ual correction of the detection results, we apply the track-
ing algorithm such as K shortest path routing. We also plan
to improve the detection algorithm maybe by collecting a
larger labeled data-set or applying a deeper architecture.
Presently, the data-set is not large enough for a deeper CNN
and hence trying such a network results in over-fitting.

Finally, cause of the way our training data was labeled,
we had to take a window around a clicked point. We saw
that although this is a decent idea, but there are some
problems, like many of the positive training set images
contained only a partial view of the ant. So we felt the
neural network couldn’t really train on the shape of the ant
which is a very important feature. Hopefully in the future,
we will get manually labeled bounding boxes around the
ants instead of points, which should improve our results a
lot.
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Figure 9. Output from the CNN architecture
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