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Abstract

We present the conditions of a data science challenge
and inspect the official training dataset provided. We dis-
cuss our technical approach, and address the challenge us-
ing ConvNets. We implement several techniques to improve
the validation accuracy and reduce the loss. We compare
results, visualize some of the error cases, and perform a de-
tailed error analysis.

1. Introduction
1.1. About the problem

In this work, we investigate the problem of plankton
classification using data provided by Booz Allen Hamilton
through the Kaggle National Data Science Bowl.[1] The re-
sults of the Data Science Bowl would deliver a positive so-
cial impact for the worlds oceans, providing the key tech-
nology in a new instrument to assess ocean health, a task
that has been unwieldy, inaccurate, slow, and expensive us-
ing current technologies involving manual plankton classifi-
cation. This work will contribute to the community of work
done for the data science competition.

The Kaggle Data Science Bowl evaluates solutions to
the problem using the multi-class logarithmic loss func-
tion same as that of the softmax classifier. Regarding in-
tuition, this number tells us how confident we are in pre-
dicting the class of an image. Optimally, the loss will be
zero, where we correctly classify each image with full con-
fidence, (pyi

= 1). The loss formula, also known as the
softmax loss, is:

logloss = − 1

N

N∑
i=1

M∑
j=1

yij ln(pij)

where ln is the natural logarithm, yij is an indicator
function for whether image i is in class j, pij is the pre-
dicted probability for image i belonging to class j, M is the
number of classes and N is the number of images.

Figure 1. Several plankton images from randomly selected classes
(columns) from the Kaggle Data Science Bowl Dataset

1.2. Description of dataset

We use the official data provided by the Kaggle Data
Science Bowl. The dataset is comprised of approximately
30,000 labeled training images and around 130,400 unla-
beled test images. Some of the training images are visu-
alized in Figure 1. There exist 121 unique labels for the
images. We do not use any outside data in either training or
testing of our model. However, since the organisms in the
image have any orientation in the image, we can augment
our training data by rotating and/or reflecting the original
image.

1.3. Challenges

The distinguishing features of the problem which make
it interesting and difficult are-

• Very diverse dataset, ranging from the smallest single-
celled protists to copepods, larval fish, and larger jel-
lies.

• The organisms in the image can have any orientation
within 3-D space.
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• Some of the classes correspond to the same genus but
different species and hence appear very similar.

• Few classes in the dataset correspond to unidentified
planktons and objects.

• 12 classes have fewer than 20 images each in the train-
ing set, making it difficult to classify unseen examples

• Some images are too noisy to be unambiguously la-
beled by the experts. Some amount of noise in the
training data is thus inevitable.

1.4. Expected Results

As part of the competition, we are required to submit
a csv file listing the class probabilities of 121 classes for
each test image. The submissions are evaluated based on
multiclass softmax loss.

The current leader in the Kaggle Data Science compe-
tition, Deep Sea, currently has a test loss of 0.560994, (as
of 8 PM on 3/15/15). The current leader’s approach and
implementation is currently unknown.

2. Background/Related Work
2.1. ConvNets

In recent years, Convolutional Neural Networks (Con-
vNets) have won the main image classification competi-
tions in the computer vision community. ConvNets are well
posed to solve the problem of image classification because
of the basic neural network architecture and the parameter
sharing which makes the features translationally invariant.

A neural network is comprised of many units inspired by
biological neurons, that is, they are interconnected and hold
weights and biases. The neural network can be trained such
that the weights and biases are modified to learn an optimal
set of numbers for a given task.

Each layer in a neural network architecture represents
a linear function, and each successive layer enables the net-
work as a whole to represent a higher order function. There-
fore, complicated functions may be expressed by a deep net-
work.

A ConvNet has the basic neural network architecture, but
with four primary types of layers, convolution, rectified lin-
ear units (ReLU), pool, and fully connected (FC). With the
labeled input images, the weights can be driven by a mo-
mentum supported stochastic gradient descent minimizing
a loss function.

2.2. ConvNet Modifications

The classification error of a ConvNet can be reduced by
several methods. Fine tuning, gathering more training data,
and increasing the depth of the ConvNet are all possible ap-
proaches. Another approach is to modify certain properties

Figure 2. Visualization of a neural network (right) with dropout
(left) [4]

of ConvNet layers. This subsection explores some of these
modifications.

2.2.1 Dropout

Dropout is a method that reduces overfitting in ConvNets by
randomly silencing neurons with a certain probability dur-
ing training. This has a similar effect to training multiple
sub-ConvNets within a larger ensemble ConvNet, and tak-
ing the best result. Srivastava et al showed that it improved
validation accuracy on a variety of training datasets, mean-
ing that it could potentially reduce overfitting on this dataset
as well [4].

2.2.2 Data Augmentation

Another way to improve the performance of ConvNets is
by simulating variations in test data. By looking at training
data, some of the types of variations in test data can be ex-
pected. By making similar variations to our training dataset
during training, we can improve the likelihood that our Con-
vNet will be able to correctly classify such edge cases.

Data augmentation is especially useful when training
data is limited. For the Kaggle data science contest, we
have very small training data sets for some classes, which
means that we may receive new cases for these classes that
the ConvNet has not seen before. In other classes, there ex-
ists a lot of intra-class variation, specifically with respect to
the orientation of the subject. Across all classes, there also
exists noise. These image irregularities may contribute to
misclassifications of slight variants to the data.

We experiment with several kinds of data augmentations
that we observe in our training data. Specifically we ob-
serve rotation and flips as useful augmentations to the train-
ing image. With these augmentations, the trained network
should still have data integrity, but will also be more likely
to correctly classify unseen classes.

2.2.3 Leaky ReLU

Leaky ReLU units have been shown to have a small but
consistent improvement in classification accuracy in deep
neural networks [6]. A recent paper that surpassed ’hu-
man’ level performance on the ImageNet challenge used
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Figure 3. ReLU (left) and Leaky ReLU with a learnable gradient
(right) [5]

a Leaky ReLU layer with a learnable gradient to optimize
weight training [5]. By parameterizing the ReLU gradient
as a quantity that can be updated, the ConvNet can converge
more quickly.

2.2.4 Xavier Initialization

Weights and biases are typically initialized randomly. The
code used in the assignment uses a random Gaussian distri-
bution to initialize the code. The issue is summarized in the
following:

”If the weights in a network start too small, then the sig-
nal shrinks as it passes through each layer until its too tiny
to be useful. If the weights in a network start too large, then
the signal grows as it passes through each layer until its too
massive to be useful. Xavier initialization makes sure the
weights are just right, keeping the signal in a reasonable
range of values through many layers.” [7,8]

Therefore, we could consistently expect the same or im-
proved results when training a ConvNet when working with
a Xavier initialization.

3. Approach
Because of a large number of classes and high variability

in the dataset, ConvNets seem to be a very good choice for
Plankton Classification. The competition tutorial on Kaggle
demonstrated classification using the aspect ratio of images
contained in the dataset. This achieved a training accuracy
of 44.61% and a validation loss of 3.74 using 5-fold cross
validation. This motivated us to examine the performance
of Non-ConvNet approaches

3.1. Non-ConvNet approaches

1. Major-minor axis ratio of convex hull After examin-
ing the datasets, we noticed that members of some of
the classes are round, some are elliptical and some are
relatively thin and long. So, we calculated the convex
hull of the pixels belonging to plankton in the image
and used the the ratio of the major and minor axis of
the convex hull as a feature. A two layer neural net-
work was trained on these features. Our best hyperpa-

rameter setting achieved a training and validation ac-
curacy of 13%, which was not impressive.

2. Raw pixels and neural network The pixel intensity
of the images resized to size 24x24 were used as the
inputs to a two layer neural netwok. We held out one-
sixth of the training data for cross validation. Our best
network achieved training and validation accuracy of
29.70% and 28.14% respectively and achieved a loss
of 3.0255 on the test data.

3.2. ConvNet based approach

The other participants of the competition had already re-
ported good results using ConvNets. We experimented with
various architectures, regularization and augmentation tech-
niques using ConvNets.

1. Two layer ConvNet baseline - We trained a two
layer ConvNet as a baseline to gauge the performance
of ConvNets. In all our ConvNet approaches, we
have retained one-sixth of the training data for cross-
validation. Thus our training set consists of 25,000
images and the validation set consists of about 5,000
images, randomly chosen from the given labelled data.
Our best network, using 60 channels of 5×5 filters,
achieved training and validation accuracy of 59.90%
and 49.77% respectively and a loss of of 1.937 on the
test set after training with dropout.

2. Three layer ConvNet- We gradually increased the
complexity of our model hoping to achieve a better
performance. Hence, we added a fully connected layer
before the softmax layer, consisting of 64 affine units.
We kept the first layer as a 3 × 3 conv layer with 32
filters. This model was found to be overfitting, giving
us a training and validation accuracy of 72.70% and
52.28% respectively, achieving a loss of 1.713 on the
test set. We didn’t spend time on tuning the hyper-
parameters of this model because we were hoping to
achieve a better performance using a deeper model.

3. Five Layer ConvNet We used the same network im-
plementation provided in the CS 231N, Assignment 3.
Our data consists of grayscale images. We replicated
the grayscale image across the three channels to get a
RGB representation. The first three layers of the net-
work are Conv-ReLu-Pool layers having a filter size of
5 × 5 × 3, with 32, 32 and 64 channels respectively.
We do 2×2 max-pooling in all these layers. After tun-
ing the hyperparameters of the network, we obtained a
training and validation accuracy of 79.10% and 63.79
% respectively obtaining a loss of 1.258 and 1.427 with
and without dropout respectively. Among all our net-
works, this network gives the lowest loss on the test
data.
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4. Six Layer ConvNet We implemented a six layer Con-
vNet using the CS 231N Assignment 3 framework. Af-
ter many tries, we were unable to train this network
using random weight initialization. We noticed that
the architecture of the first 4 layers of this network is
same as that of the five layer network. After transfer-
ring the weights learned from the 5 layer network, we
were able to get it to train. Using all the weights from
the smaller network was not giving good results, with
the 6 layer network achieving a lower validation accu-
racy than the 5 layer network.

We experimented with selectively transferring as few
weights as possible and getting the network to train.
We could not get the network to train if we only trans-
fer the biases of the first four layers and initialize the
other weights randomly or we only transfer the weights
of 2nd, 3rd or 4th layer. However, we could get the
network to train by only transferring the weights of the
first layer. The trained network achieved a validation
accuracy of 66.06%, which is slightly better than the
original network. The achieved training accuracy was
79.60%. However, the loss on the test set was 1.464,
higher than the five layer network.

3.3. Evaluation Metrics

We use Validation Accuracy and the Overfitting Ratio as
complementary metrics to understand how to improve our
ConvNet during training. Validation Accuracy is given as:

V alAcc =
#V alidationImagesCorrectlyLabeled

#V alidationImages

And the Overfitting Ratio is:

ORatio =
TrainingAccuracy

V alidationAccuracy

Where the Training Accuracy is:

TrainAcc =
#TrainingImagesCorrectlyLabeled

#TrainingImages

By considering the overfitting ratio during training, we
can know the current state of the model and how to modify
the ConvNet to better train it, which might be to add more
layers, increase the number of filters, or other modifications.

4. Experiments

4.1. Improving the Five Layer Convnet

We did various experiments to decrease the loss on test
data. They are-

Layers Filter Size Val. Accuracy Val. Loss ORatio
5 3 x 3 x 3 58.11% 1.749 1.09
5 3 x 3 x 7 58.51% 1.592 1.18
5 3 x 5 x 7 58.73% 1.584 1.19
5 5 x 1 x 5 ≤ 10% * - -
5 5 x 3 x 5 58.30% 1.887 1.18
5 5 x 5 x 5 63.79% 1.258 1.24
5 5 x 5 x 5** 63.97% 1.242 1.27

Table 1. 5-Layer Network Models trained with varying filter sizes
over 15,000 updates without data augmentation. * Terminated af-
ter 10 epochs, low performance. **Trained for 75,000 updates

1. Varying filter sizes in the first three conv layers

We experimented with various filter sizes, and the re-
sults are shown in Table 1. Looking at these results,
we found that the optimal filter sizes were 5x5 for all
three layers. After exploring the space, we trained the
model with filter size 5 x 5 x 5 for 75,000 updates,
and found a negligible improvement (0.16%) in valida-
tion accuracy and a small increase in overfitting ratio
(0.03). Without further modification to the ConvNet,
this may be the best 5 layer model in this paper.

2. Not doing max-pooling in some conv layers Max-
pooling reduces the size of the volumes and hence the
number of parameters. Our best network had max-
pooling in all the three conv layers. We experimented
with two different variations -

(i) Turning off pooling in first two layers- This in-
creases the number of parameters in the 4th FC
layer by about 16 times. The network was found
to train very slowly and showed large overfitting
after 10 epochs.

(ii) Turning off pooling in the first conv layer- This
increases the number of parameters in the 4th FC
layer by about 4 times. Although this network
was not showing large overfitting, it achieved a
training accuracy of 76.40% and validation accu-
racy of 61.72% after training for 60 epochs with
a higher value of regularization(0.005)

3. Data augmentation by random rotation and flips
Data augmentation comes as a natural step because of
the very nature of our dataset. Our dataset contains im-
ages which can correspond to an arbitrary 3D orienta-
tion of the plankton. We have done data augmentation
during the first 80% of epochs of training by doing hor-
izontal and vertical flips and rotations of the multiple
of 45o. Data augmentation for an image is done with a
probability of 0.5 by applying a randomly chosen op-
eration from the ones listed above. Classifier trained
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using data augmentation had very less overfitting but
the performance was similar to the networks trained
without augmentation, achieving a training and valida-
tion accuracy of 67.80% and 65.16% respectively.

4. Application of Leaky ReLU and learnable gradi-
ents

Leaky ReLU Learning Val. Acc. Val. Loss
Off Off 52.62% 2.21
On 0.1 47.39% 1.85
On 0.1 46.60% 2.47
On 0.25 36.11% 2.27

Table 2. 5 Layer Network Models with filter sizes 5x5x5, tested
with and without leaky ReLU and learnable leaky ReLU, trained
over 5,000 updates.

While the literature suggests that we should obtain bet-
ter classification accuracy with leaky ReLUs, our ex-
periments suggested otherwise because of the lower
validation accuracy (52.62% vs 47.39% without and
with leaky ReLU respectively). In the case of a Leaky
ReLU without a learnable gradient, however, the Vali-
dation loss was found to be significantly lower than in
the case without a Leaky ReLU (1.85 vs 2.21 with and
without Leaky ReLU respectively).

As Kai et al suggested an initialization of the learn-
able gradient at 0.25, we did so as well, and observed
a similar loss to the result without Leaky ReLU (2.27
vs 2.21) [5]. However, in this case, the validation accu-
racy was lower by a significant margin of 16%. A sim-
ple conclusion to draw would be that by parameteriz-
ing the Leaky ReLU gradient to be learnable is causing
overfitting on non-essential features, however, interest-
ingly, the overfitting ratio for the model was 0.96. This
implies that the model has not yet been overfitted, but
it is not clear whether more training iterations would
cause the model’s validation accuracy to improve. It
is possible that with more training iterations and more
fine tuning, a better validation accuracy and loss could
be obtained.

5. Using L1 norm for the FC layer and L2 for conv
layer weight regularization L1 regularization results
in sparse weights whereas L2 regularization results
in weights having evenly distributed components.
Since Conv layer weights are shared across all the
pixels, they contain relatively rich information and
hence we don’t want to make them sparse. Making
the weights of the 4th layer(FC layer) sparse resulted
in training and validation accuracy of 69.40% and
62.67% respectively.

6. Xavier Initalization

Xavier Init. Leaky ReLU Val. Acc. Val. Loss
Off Off 47.67% 1.91
On On 6.63% 4.14

Table 3. 5 Layer Network Models with and without Xavier Initial-
ization for leaky and non-leaky ReLUs after 5,000 updates

As predicted by Kai et al, using Xavier initialization
leaky ReLU resulted in poor performance, not increas-
ing above 6.63% in validation accuracy[5]. With more
time, more experiments investigating the efficacy of
Xavier Initialization would have been conducted.

Figure 4. Three Layer and Five Layer architecture used in ConvNet

4.2. Analysis of Results

We have done experiments to visualize the working of
ConvNets and error analysis to understand the strengths and
weaknesses of our classifiers. In the following, we show the
results obtained for the classifier achieving the lowest loss
on the test data.

1. Features extracted by ConvNet Since ConvNets per-
form so well, the features extracted by them are worth
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investigating further. To visualize the high dimen-
sional features, we use a plotting tool called t-SNE,
which projects high dimensional data into a low di-
mensional space so that the relative distances are not
distorted much.

Using this tool, we generated plots for raw pixels and
features extracted by ConvNet for 250 randomly cho-
sen images from 10 randomly chosen classes. It can be
observed that features extracted by ConvNets are more
discriminative and hence perform better in classifica-
tion.

Figure 5. t-SNE plot of raw pixels for 250 images from 10 classes

Figure 6. t-SNE plot of features extracted by Convnet for same
images used in Figure 4

2. Most confused classes In our best classifier, we in-
vestigated which classes were being misclassified the
most. We visualize 7 randomly sampled images from
top 5 misclassified classes from the training set and
validation set in Figure 7 and 8 respectively. The intra-
class variability in these images is quite apparent even
when we have just sampled 7 images from each class,
which might be the cause of the poor performance.

3. Relationship between misclassification and data
The provided dataset is highly skewed in terms of num-
ber of training images for each class. The average
number of training and validation images is 250 per
class but 12 classes have fewer than 20 images in train-
ing and validation set combined. This made us wonder
whether there was some relation between the classifi-
cation accuracy and the number of images for a class
in the dataset.

Figure 7. The top 7 mislabeled classes in the training data

Figure 8. The top 7 mislabeled classes in the validation data

Furthermore, the top 7 most misclassified classes in
training set have 25, 9, 15, 9, 9, 17 and 12 images in
the training set. So it is possible that these images are
getting misclassified because of the lack of data. How-
ever, the top 7 misclassified classes in the validation
set have 152, 115, 40, 45, 38, 44 and 46 images in the
training set respectively. So there seems to be enough
data to train these classes well but the classifier doesn’t
generalize well to unseen examples. This might be due
to high intra-class variability of the images.

Figure 9. Relationship between validation accuracy and number of
images in training set for each of 121 classes. The size of points is
proportional to validation accuracy
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The scatter plot in Figure 9 shows the number of train-
ing examples (y-axis) for each class(x-axis) in the
training set. The size of the points is proportional to
the validation accuracy for that class, defined as the
number of correctly classified images of a class in the
validation set divided by the total number of images
for that class in the validation set. Small bubbles are
only present in the lower half of the plot but large bub-
bles are present throughout. So we can say that more
data guarantees good accuracy in our case. However
some classes show a good accuracy even with rela-
tively small data.

4. Most confused class pairs Another good visualization
for the performance of a classifier is to quantify which
classes confuse it the most. For a classifier C, the con-
fusion between two classes m and n can be defined as
-

ConfC(m, n) =
# images in class m labeled as n by C

# images in class m

The values of pairwise class confusion can be visu-
alized by the image in Figure 10. The intensity of
a pixel in ith row and jth column is proportional to
ConfC(i, j). The dominant diagonal tells us that clas-
sification accuracy is fairly good for most of classes.
The breaks in the diagonal indicate the classes which
are being confused the most with some other class. Ex-
ample images from the 5 most confused class pairs can
be seen in Figure 11.

Figure 10. Image showing confusion for class pairs. Darker pixels
correspond to higher value of confusion

5. Conclusion
We undertook a fairly difficult classification problem in

this project, which is challenging due to presence of large

Figure 11. Most confused class pairs. Each column of two images
consists of 7 randomly chosen images for the most confused class
pairs ordered from left to right in decreasing order of confusion.
The class of the left image is being confused as the class of right
image

number of similar classes and relatively small data. We ex-
amined the effectiveness on ConvNets in extraction of fea-
tures from these images and trained a five layer ConvNet
achieving a loss of 1.25 on the test data and a validation ac-
curacy of 65.16%. We did various experiments to improve
the performance of ConvNets and also did a detailed perfor-
mance analysis.
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