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Abstract

Eye gaze has been shown to be a factor of high psycho-
logical, social, and linguistic importance in human commu-
nication. Studies of gaze, however, often require expensive
equipment or time-consuming annotation, that can limit the
possibilities of what can be studied, at what scaled, and to
what degree of generalizability.

In this final project I propose a pipeline for robust gaze
detection in images of human faces, and train several con-
volutional neural networks to address the task, reporting
accuracies of over 80% in nine-way directional classifica-
tion, with sensical positional patterns of errors.

I also propose extensions to the domain video data, in-
cluding a proposed frame-to-frame smoothing method. I
report preliminary results on naturalistic spoken language
data, which suggest that the models seem to have trouble
generalizing, so I discuss difficulties in that domain.

1. Introduction
The body is an inherent part of the human communica-

tive system, but the relationship of body movements to lan-
guage is generally understudied in linguistics. One partic-
ular challenge lies in the difficulty of collecting accurate
data: manual annotation of gestures and body movements
is often time-intensive or otherwise expensive, so existing
studies rely on very small datasets (as small as two minutes
of video), limiting the generalizability of their findings.

My primary interest in computer vision is to develop
methods for the automatic annotation of linguistically and
socially relevant aspects of body movement so as to study
their functions in communication. Our existing paper in this
area used very simple image-difference vision features on a
corpus of speech from YouTube to confirm the hypothesis
that when speakers are acoustically excited – with higher
and more variable pitch and loudness – they are concur-
rently moving their bodies more.[15] In this case, automatic
methods not only allowed for the use of a larger corpus, but

also for us to ask questions that would otherwise be im-
possible to ask, since unlike iconic gestures, overall body
movement is perhaps impossible to annotate by hand.

A more subtle, but perhaps yet more socially meaning-
ful bodily cue lies in eye gaze. Existing work in linguistics
and psychology has shown that eye gaze often plays an im-
portant rule in infant and child language acquisition,[2, 7]
turn-taking in dialogue,[3] and the disambiguation of refer-
ential expressions.[4]

Furthermore, gaze clearly has a strong social compo-
nent. For example, subjects in an interview setting were
more likely to rate interlocutors who had high levels of
mutual eye contact as credible and attractive, and to as-
sociate gaze with intimacy and interpersonal similarity.[1]
Moreover, fMRI neurological studies have demonstrated
that gaze has a strong impact on the visual processing of
faces [6] and differential processing of observed social in-
teractions based on whether the agents’ gaze was visible to
subjects or masked.[11]

Like the question of overall body movement mentioned
above, the study of gaze in linguistic communication is
nearly infeasible without automatic methods. Therefore, in
this paper I present work towards producing a system using
convolutional neural networks (CNNs) capable of automat-
ically annotating head-on videos with information about the
speaker’s gaze direction in linguistically meaningful ways.

I propose to then apply this system to existing corpora
of videorecorded speakers giving naturalistic monologues
to look for connections with body movement and acoustic
prosody. In the current work I focus on checking the sys-
tem’s performance relative to a human standard annotation.
However if it succeeds, in future work this system will allow
us to ask new questions on a larger scale than previous lin-
guistic research. For example, is diverted gaze consistently
a signifier of disinterest (and thus low body movement and
low pitch)? Is vertical gaze up or down indicative of posi-
tive or negative evaluations of the subject at hand?
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Figure 1. Visualization of the nine-way gaze classification task
proposed in this paper.

2. Prior Work

The question of gaze detection has already been ad-
dressed in the literature. Some early work used color to gen-
erate masks for estimating head position with multi-layer
perceptrons [12], but head position is more coarse than gaze
and less relevant to my goals here. Much work has focused
on HCI applications, which have the advantage of allowing
for collecting speaker-specific training data. Existing stud-
ies demonstrate that the problem is a tractable one, however,
and report, for example, accuracies within two degrees on
webcam data have been reported using a two-layer feed-
forward network,[13] and with PCA combined with a re-
current neural network.[5]

One of the most recent, large, and relevant data sets for
this task is the Columbia Gaze Data Set. In the primary
paper produced with this data set, the authors focused on
gaze locking (that is, whether or not subjects were look-
ing straight at the camera). They reported accuracies higher
than human performance (an MCC of over 0.8) on the bi-
nary task of locked / not-locked, even at a distance of 18
meters from the subject.[14] In their work, they used a
commercial face and fiducial point detector to extract eye
regions, which they compress using principal component
analysis (PCA) and multiple discriminant analysis (MDA)
down to a six-dimensional subspace, within which they per-
form binary classification with a linear SVM.

3. Approach

In this work I propose a basic pipeline for gaze detection
in static images making use of the Columbia Gaze Data Set.
I then present preliminary results applying this system on
existing linguistic video data.

In particular, I frame gaze detection as a relatively coarse
nine-way classification task (see Figure 1), where eye gaze
in an image is classified as being vertically centered, up, or

down; and horizontally centered, left, or right. The labels
used for this classification task, then, simply correspond to
the product of these possible gaze directions.

3.1. Data

In this work I make use of the Columbia Gaze Data Set1.
The dataset includes 5,880 images with 56 subjects taken
at five horizontal head poses, with seven horizontal gaze
directions (±15, ±10, ±5, and 0) and three vertical gaze
directions (±10 and 0).

This data is still somewhat small for use with CNNs, but
I consider several approaches to mitigate this factor. The
data is also very clean, with participants in head-stabilizing
harnesses and gaze targets placed at very regular intervals.
An example of one image from the dataset may be seen in
Figure 2. The cleanliness of that data may, however, have
had negative impacts on the robustness of the downstream
system, as I will discuss later.

3.2. Preprocessing

In this work I aim for the input to the system to be a rel-
atively arbitrary image of a human face. Significant prepro-
cessing is therefore necessary to provide consistent inputs
to a downstream CNN capable of making decisions about
gaze direction.

While some aforementioned prior work has addressed
the issue of head pose, in this work I want to make a robust
system that is capable of detecting gaze direction relative
to the camera taking the image, regardless of the head pose
of the subject. Such a system makes linguistic sense con-
sidering the general object of study is the perception of the
listener, and whether the speaker is looking towards them
or not; however, it adds significant noise to the system and
difficulty to the modelling task.

Therefore, the preprocessing framework I settled on con-
sists of three primary steps:

Face Detection

In this step, I use a pre-trained face detection module in
DLIB2, which employs Histogram of Gradients features in
an image pyramid with a linear classifier and a sliding win-
dow detection scheme. This method is able to find the face
in 99.2% of the images in the Columbia Gaze Data Set, and
the remainder are not used in training or testing.

Landmark Finding

Given a face position, it is possible to make an estimate
of the eye position by dividing the face into four regions

1http://www.cs.columbia.edu/CAVE/databases/
columbia_gaze/

2http://dlib.net

2

http://www.cs.columbia.edu/CAVE/databases/columbia_gaze/
http://www.cs.columbia.edu/CAVE/databases/columbia_gaze/
http://dlib.net


Figure 2. Original training image

Figure 3. Input to the network after preprocessing

vertically and extracting the region found second-from-the-
top. In initial experiments I used this method and used these
regions directly as input to the classification models, but
found performance to increase across the board by 5-10%
when continuing forward with the somewhat more princi-
pled approach described below.

The authors in [14] note that they use a commercial face
landmark detector to rectify eyes to a consistent represen-
tation; in this work, I again employ DLIB, which has an
implementation of the model for shape prediction found in
[9]. DLIB provides a model pre-trained on the iBUG 300-W
face landmark dataset3 to predict facial landmarks. I used
this model to extracted predicted eye corner locations to be
used in the next step.

Rectification

Using these four points per eye, I then employ OpenCV’s4

perspective transformation to transform each eye to a con-
sistent 128 by 256 pixel space. I pad the eye corners by 16
pixels from the edge to allow for nearby facial textures and
other potentially relevant information to not be lost, as well
as to help buffer against potential noise introduced in the
landmark detection process. This padding also has the po-
tential to help downstream when doing crops for data aug-
mentation.

3http://ibug.doc.ic.ac.uk/resources
4http://opencv.org

Figure 4. iBUG 300-W eye corner points used for rectification,
marked in solid blue. 37, 38, 40, and 41 for the left eye; 43, 44,
46, and 47 for the right eye

4. Experiments

In these experiments I frame the problem as a nine-way
classification task on the Columbia Gaze Data Set.

All horizontal labels in the data set are collapsed to be
either left (all labels left of center), center, or right (all la-
bels right of center). The vertical labels are already in three
categories.

For baselines I used five-fold cross-validation since it
was tractable and provides more consistent results; for the
CNNs I divided the data set into 80%, 10%, and 10% train,
validation, and testing splits, respectively.

4.1. Models

In this section I describe the various models tested.

Baselines

The models used for KNN, SVM, and SMX were all from
the code provided with the homeworks for the class.

Most Common Class (MCC)
The most fundamental baseline, this reports guessing

based on the most common class seen in the training data.

K Nearest Neighbors (KNN)
This baseline looks for the k nearest neighbors in the

feature space, and picks as the correct class the one that
receives a “majority vote” out of those neighbors. In this
case I used k = 5.

Support Vector Machine (SVM)
This baseline uses the SVM loss objective to optimize a

linear classifier; all reported results are using standard pa-
rameters trained for fifty iterations.

Softmax (SMX)
This baseline uses the Softmax loss objective to optimize

a linear classifier; all reported results are using standard pa-
rameters trained for fifty iterations.
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Nets

The three- and five-layer CNNs described below were
trained using code provided with the homeworks for the
class.

Three-layer CNN
This is a simple CNN using one convolutional layer fol-

lowed by two affine layers and trained with a softmax loss.
The convolutional layer is followed by a ReLU and a pool-
ing layer, and the first affine layer is also followed by ReLU.

These models were trained with 32 filters of size 5 in the
convolutional layer and 128 neurons in the hidden affine
layer, and were trained from scratch with the entirety of the
training data.

Five-layer CNN
This is a simple CNN that expands upon the previous

model by beginning with three convolutional layers (each
followed by ReLU and pooling).

These models were trained with 32, 32, and 64 filters,
respectively, in the first three convolutional layers and 128
neurons in the hidden affine layer, and were trained from
scratch with the entirety of the training data.

AlexNet
Since the dataset is reasonably large, but not large

enough to train a truly full-scale convolutional network
from scratch, transfer learning with fine-tuning of an ex-
isting model is an appropriate possible approach.

I used the Caffe5 library to test this method, starting from
the pre-trained Caffe reference model of AlexNet. [8, 10]
AlexNet makes a particularly good model for this task, in
part because its robustness to random crops may help when
preprocessing is less than perfectly consistent.

4.2. Conditions and Data Augmentation

Baselines

All baseline models were trained both on the raw pixels
of the images (resized to 64 by 64 for tractability) and on
dimensionality-reduced feature vectors of length 500 com-
puted using principal component analysis (PCA).

Nets

Initially the three-layer CNN was trained without data aug-
mentation, and the best result in this condition is reported;
however, I then implemented a data augmentation proce-
dure to double the size of the dataset using random crops,
tints, and contrast changes. Of course no flips were used,
since positionality is centrally important to this task.

Hyperparameters were found using a manually-
controlled coarse-to-fine random search in the space, code
for which is attached.

5http://caffe.berkeleyvision.org/

BASELINES
Model Condition Accuracy
MCC 12.90%
KNN Raw Pixels 14.20%
SVM 34.04%

Softmax 32.19%
KNN PCA 36.68%
SVM d=500 31.52%

Softmax 28.28%

Table 1. Baseline results; average over 5-fold cross-validation

NETS
Model Condition Val Test

Three-layer 63.46% 60.18%
Three-layer +Augmentation 74.54% 70.01%
Five-layer +Augmentation 78.90% 71.63%
AlexNet finetune SMX 55.45% 54.18%
AlexNet + all FCs 79.27% 76.18%
AlexNet + last conv 80.36% 79.27%

Table 2. Best achieved validation and test accuracies

Standard data augmentation in Caffe was used with
AlexNet, but also with no flips/mirrors.

AlexNet was fine-tuned in three conditions: first, only
the softmax layer (functionally using the net as a large pre-
processing step to produce feature vectors); second, back
through all fully-connected layers; and finally, back through
the last convolutional layer before the fully-connected lay-
ers.

5. Results

The baseline results are shown in Table 1. These demon-
strate that the robustness required for task is not possible
to achieve with a straightforward linear classifier or KNN
approach.

PCA for dimensionality reduction helped with the per-
formance of KNN, but actually hurt for the SVM and Soft-
max classifiers; this seems related to some loss of direct
positional information present in the raw pixel versions of
those classifiers.

The performance of the convolutional nets, on the other
hand, was much better, reaching validation accuracies
above 80% and suggesting that perhaps the current ap-
proach is robust enough to apply to real-world data.

In particular, the fine-tuned AlexNet model worked the
best, and the deeper back the fine-tuning went the better
the overall performance. The five-layer model from scratch
came near in performance, however, although at the cost
of some significant overfitting that can be observed in the
extracted features from its first convolutional layer, seen in
Figure 7.
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6. Linguistic Application
Eventually, my aim is to apply the above system to real-

world linguistic data to extract interesting linguistic knowl-
edge about how people integrate gaze into their conversa-
tional styles and strategies. Given the encouraging results
above, I set above beginning to apply these models to some
existing data and report my findings here.

6.1. Data

In other work I am currently collecting a corpus of
YouTube monologues where individuals “vlog” and speak
directly towards their screens. The videos are in some ways
relatively controlled, because the backgrounds and cameras
are often static, and once collected we know a priori that
they contain one and only one speaker.

6.2. Video as Smoothing

The above models seem promising, but still not fully
convincing as a result of performance above 90% might be;
however, in the video context we can use subsequent frames
as a form of smoothing, since we can reasonably expect that
gaze does not in general change positions faster than once
per several frames.

To that end I implemented a simple smoothing algo-
rithm. First I extracted probabilities from succeeding
frames of a video with the best-performing AlexNet model
above (using the Caffe python API). Then, beyond just the
argmax for a given frame (raw), I tried predicting the gaze
direction based on a moving window of 5 frames, where the
immediately following and preceeding frames are down-
weighted by a half, and the frames two back and two ahead
are downweighted by a quarter (smooth).

6.3. Human Annotation

To check the robustness on real-world data of the models
I trained, I implemented a simple program for human anno-
tation of video. The program presents random frames from
a video and asks the user to annotate the gaze direction to
one of the nine categories shown above.

I used this program to annotate approximately 100
frames from each of three videos, and evaluated the model’s
automatic performance with reference to my annotations.

6.4. Findings

Table 3 presents the accuracies I found on real-world
video. These are notably far below the accuracies I found
with the controlled dataset used to train the models.

One video in particular was quite bad, with almost no
matches between my annotations and the output of the sys-
tem. Looking by hand, this is a video in which I perceived
the speaker to be looking straight at the camera most of the
time, but the system almost never made this judgement. I
address this further below.

ACCURACY VS HUMAN
raw smooth

Video 1 44.04% 47.62%
Video 2 47.15% 48.21%
Video 2 4.08% 4.08%

Table 3. Accuracy compared to human annotation for individ-
ual frames taken from three YouTube videos, smoothed and un-
smoothed

Figure 5. Confusion matrices on validation data for the upper-left
and lower-left classes

7. Discussion

Overall, the models were generally able to learn and
learn well from the training data; however, the size of
the dataset was a notable problem. For all of the best-
performing models, whether trained from scratch or fine-
tuned, the training set accuracy was beginning to approach
100%, suggesting that overfitting was a serious issue.

Data augmentation with crops, tints, and contrasts
helped this issue substantially, with a more than 10% boost
to validation accuracy in my results. However, it may be the
case that this particular dataset is too small and too closed-
domain to be robust to real-world noise.

These models did not transfer very well to real-world
linguistic data, as shown by comparison with human an-
notation. I think this discrepancy can be explained due to
inavoidable overfitting on a small dataset, domain transfer
issues, and changes with lighting and video quality.

To better observe what was actually happening, I plot-
ted confusion matrices on the validation data with the five-
layer CNN; almost all of them look very reasonable, with
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Figure 6. Confusion matrix for the (most difficult) center class

the probability mass loaded on the actual point of interest
and errors surrounding it.

However, the worst-performing class for this model is
actually the straight-on class. This may be due in part to the
limited training data for that class: only around 300 exam-
ples in training and 20-30 examples each in the validation
and test sets. This class also has the most neighbors to it.

These results suggest that perhaps a better model in the
future might incorporate a loss function that explicitly val-
ues the center as the most important class above all others,
rather than a broad classification objective which allows the
other classes to overwhelm the central class in spite of its
importance.

Overall, unfortunately, this system is not yet production-
ready for real linguistic research, and a significant amount
of additional tweaking, regularization, and perhaps even
more naturalistic data collection will be necessary before
it can truly be used.
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Figure 7. Extracted features in the first convolutional layer for the best-performing five-layer net.
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