
Plankton Classification Using Hybrid Convolutional Network-Random Forests
Architectures

Pranav Jindal
Department of Computer Science,

Stanford University
pranavj@stanford.edu

Rohit Mundra
Department of Electrical Engineering,

Stanford University
rohitm92@stanford.edu

Abstract

Convolutional Neural Networks have been established
as the dominant choice for recent state-of-art image clas-
sification systems. Encouraged by their success at both im-
age classification and feature extraction, we attempt to use
CNNs to work on the image classification task of automati-
cally identifying different species of plankton. We approach
the problem by first directly applying CNNs to classify the
plankton and move progressively towards using CNNs as a
generic feature extractor with a random-forest classifier on
top of the hierarchy. We examine the performance of both
the above approaches and discuss the results obtained in
the Kaggle National Data Science Bowl 2015.

1. Introduction

In this section we describe the problem trying to be ad-
dressed by the National Data Science Bowl 2015 along with
the dataset.

1.1. Problem

This paper focuses on the automated classification of 121
types of plankton for the National Data Science Bowl pre-
sented by Kaggle and Booz Allen Hamilton. Planktons are
vital for our ecosystem as they account for more than half
the primary productivity on earth and nearly half the total
carbon fixed in the global carbon cycle. Loss of plankton
populations can have devastating impacts in our ecosystem
and thus, measuring and monitoring them is fundamental
to the wellbeing of our society. Conventional methods for
measuring and monitoring plankton populations are infea-
sible and do not scale well - they involve analysis of under-
water imagery by an expert at plankton recognition. The
automation of this task will have broad applications for as-
sessment of ocean and ecosystem health.

1.2. Dataset

The data provided by Kaggle for the competition con-
sisted of labeled training images and unlabeled test images
which were in grayscale although they were stored in 3-
channel JPEG images. Since the images were acquired from
an underwater towed imaging system, they were segmented
by the competition hosts such that each image contained just
one species of plankton. As a result, the images were dis-
tributed unevenly among 121 classes and were of different
dimensions ranging from as little as 40 pixels to as much as
400 pixels in one dimension. The exact number of images
for training and test are listed here.

Training/Labeled 30,336 images
Test/Unlabeled 130,400 images

It is visible that the training set is substantially smaller than
the test set and thus, in the next section we describe data
augmentation to inflate the training set size.

Figure 1. Plankton varieties

Some examples of labeled plankton images are shows in
Figure 1.

1

2. Preprocessing and Data Augmentation

In this section, we describe the preprocessing steps and
data augmentations training and test images underwent be-
fore being used for training.

2.1. Dimensional Uniformity

The dataset provided by Kaggle consists of images of
varying sizes, however conventional CNNs require that all
the input images have the same dimensions. Since the im-
age sizes ranged from 40 pixels to 400 pixels wide, we de-
cided to work with 128 × 128 pixel images. Even so, most
images did not have a 1 : 1 aspect ratio and we decided to
experiment with two approaches:

1. Maintaining aspect ratio: This involves making sure
the larger of the two dimensions of a given image is
scaled such that it is 128 pixels shaped in that dimen-
sion. The smaller of the two dimensions would obvi-
ously scale down by maintaining aspect ratio to less
than 128 pixels. The resulting space which does not
represent the image (due to the smaller dimension be-
ing less than 128 pixels) is left to have a white back-
ground since it blends well with backgrounds of im-
ages.

2. Forgoing aspect ratio: This involves forcing every im-
age (regardless of original dimensions) to be scaled to
fit 128×128 in each dimension. As a result, this causes
many images (particularly rectangular ones) to appear
distorted.

On training convolutional networks (described in later sec-
tions) with both types of transformations described above,
we found little to no difference in training and validation
loss and decided to preserve the aspect ratio for one of
our convolutional networks (ClassyFireNet) and forgo the
aspect-ratio for the other net (GoogLeNet).

2.2. Filtering Images

As part of the experimentation, we also tried applying
the canny-edge detector on the original images and fed
the resultant edge-images for training. Our motivation
was that a much of the noise present in the images would
be removed as a result of this transformation. However,
we found that this filter on this dataset did not perform
better than the raw images. We hypothesize that this
is a result of the loss of texture from plankton images
causing convolutions to be less effective. Figure 2 shows
examples of the original images as well as the transfor-
mation after applying the canny-edge detector on the image.

Figure 2. Canny-edge detection on original images

2.3. Data Augmentations

Since the test data was substantially larger than the train-
ing data, it was difficult to generalize well without artifi-
cially inflating the dataset by using augmentations. As a
result, we tried many data augmentations:

1. Rotation (0◦ to 360◦ with 20◦ increments)
2. Zooming (factors of 1/1.3, 1/1.2, 1/1.1, 1.1, 1.2, 1.3)
3. Shearing (−20◦ and 20◦)
4. Flipping (Bernoulli, p = 0.5)
5. Translation (+/− 4 pixels randomly offset in x and y

directions, each with uniform probability)

Even though real-time data augmentation almost always
outperforms offline/batch-processing data augmentation,
we were constrained to use offline data augmentation for ro-
tation, zooming and shearing since Caffe, our deep-learning
framework, does not facilitate real-time data augmentation
of these types. It does however provide real-time data aug-
mentation for flipping and translation so these were done in
real-time.

2.4. Training/Validation Split

We decided to use 85% of the original dataset for training
purposes and the remaining 15% for validation. The data-
points were chosen randomly and even though stratification
was not enforced, both sets were verified to be represen-
tative of the original class distribution. It is important to
note that if a given image was used for training, so were all
its augmentations. This prevented the use of an image for
training and its transformation for validation – a situation
likely to lead to over-optimistic validation loss.

2

3. Loss Function
This section describes the loss functions being mini-

mized by the convolutional networks as well as random
forests. This is vital to understand since changes in loss
functions change the fundamental optimization objective
for a classifier.

3.1. Logarithmic Loss

The primary metric for evaluation for this competition
was log-loss calculated over all test examples in the follow-
ing manner:

logloss = − 1

N

N∑
i=1

M∑
j=1

yij loge(pij)

N = Number of test examples (130,400)
M = Number of classes (121)
pij = Predicted probability of test example i belonging to
class j
yij = 1 if test example i does indeed belong to class j, else
0.
Intuitively, a small loss indicates that the classifier (on av-
erage) predicts a high probability of the correct class. For
instance, if the classifier predicted an image to belong to
the correct class with probability of 0.25, the logloss would
then be − loge(0.25) = 1.386. Conversely, if a logloss of
1.386 is experienced over a dataset, one can infer that the
classifier predicted the correct class to have probability of
e−1.386 = 0.25 on average. A consequence of using this
loss metric is that assigning very low probabilities for the
correct class even a few times over the entire dataset can be
very expensive.

Since this was the metric the competition assessments
were made on, our convolutional networks minimized this
loss function.

3.2. Classification Rate

Another useful and popular metric for classification
problems is the classification rate – the fraction of data
points for which the maximum probability (over all classes)
is assigned to the correct class. This loss metric is invariant
to the actual value of the probability assigned to the correct
class and only checks whether the correct class is assigned
a higher probability than all others. While this metric is not
used for optimization purposes in the convolutional network
training, it is the default metric used for Random Forests
training.

4. Network Architecture
This section describes the evolution the convolutional

networks we used in a step-wise manner. We start with in-

troducing a network with relatively few convolutional layers
and describe how we progressed to deeper networks.

4.1. Phase 1: 4 convolution, 1 fully-connected layers

As our first attempt to training CNNs for the compe-
tition, we started with a very simple network with just 4
convolutional layers (conv3-64 each) and 1 fully connected
layer (FC-256) leading to a 121 class Softmax prediction.
This network was not trained over GPUs but instead over an
Intel Architecture 64-bit CPU. The network training lasted
over 24 hours resulting in the training and validation losses
to saturate around 1.58. Since the training loss and valida-
tion losses were not disparate, we realized that our model
had very low capacity and overfitting was not possible even
without data augmentations. Thus, we realized our next step
was to use a deeper model with more capacity.

4.2. Phase 2: 5 convolution, 2 fully-connected layers

In our second design phase, we decided to use a deeper
network than that used in Phase 1. To get started, we
used the default CaffeNet architecture provided by the Caffe
framework. The only modifications were only those in the
input and output layers (data size and number of classes).

Data (128× 128)
Conv11-96 (Stride 4)
Maxpool3 (Stride 2)

LRN-5
Conv5-256

Maxpool3 (Stride 2)
LRN-5

Conv3-384
Conv3-384
Conv3-256

Maxpool3 (Stride 2)
FC-512

Dropout (0.5)
FC-512

Dropout (0.5)
Softmax-121

The above network was first trained on just the training
data and was found to overfit after 13-14 epochs of training.
This training lasted 6-8 hours on an NVIDIA Grid K520
GPU and resulted in a training loss of 0.81 with a validation
loss of 1.18. We also tried removing the local response nor-
malization layers and found no difference in performance.
Since we had managed to overfit even in presence of drop-
out layers, we tried reducing the gap between training and
testing losses by adding rotated images as data augmen-
tation. We added 45◦ increment rotations of each image
thereby increasing the total dataset by a factor of 7. We
transferred our previously overfit model and retrained on

3

the new dataset for nearly 10 epochs of the new augmented
dataset. This resulted in both, the training and validation
losses, to saturate at 0.94. Since we had again arrived at a
situation where our training and validation loss were simi-
lar, we decided to move to even deeper networks to increase
our model capacity further.

4.3. Phase 3a: ClassyFireNet – 8 conv, 2 FC

This was the first part of our final convolutional network
design phase. Here we designed a network influenced some
of the models proposed in [2]. The key idea behind the de-
sign of this model was to start with identifying low level
features in the earlier levels with 3 × 3 convolutions build
higher level features with greater depth later. The architec-
ture we used is tabulated below and is called the Classy-
FireNet.

Data (128× 128)
Conv3-64
Maxpool

Conv3-128
Conv3-128
Maxpool

Conv3-256
Conv3-256
Maxpool

Conv3-512
Conv3-512
Maxpool
FC-512

Dropout (0.5)
FC-512

Dropout (0.5)
Softmax-121

Training the architecture above without any data aug-
mentations, we were able to overfit very quickly. This
was expected considering the architecture in Phase 2 over-
fit rather easily as well in the absence of augmentations.
To recover from overfitting, we added rotations (20◦ in-
crements) as a data augmentation along with translation
(+/ − 4 pixels randomly offset in x and y directions, each
with uniform probability) and flipping (Bernoulli, p = 0.5).
We resumed training on the previously learned weights for
the network for 5-10 more epochs (epochs of augmented
dataset). As such, we managed a validation loss of 0.83 with
a training loss of 0.62. To further reduce overfitting, we in-
troduced more augmentations such as zooming (factors of
1/1.3, 1/1.2, 1/1.1, 1.1, 1.2, 1.3) and shearing. Again, we
resumed training from the previous best model and found
the validation loss to be 0.794. We proceeded with a sub-
mission to Kaggle using this model and found a test loss of
0.785.

4.4. Phase 3b: GoogLeNet[5]

Motivated by the recent introduction of multi-scale con-
volutional networks, we trained a naive and modified imple-
mentation of the GoogLeNet as described in [5]. By naive,
we imply that certain optimizations such as batch normal-
ization were not used. Furthermore the weights were also
initialized using the Xavier algorithm [1] as opposed to us-
ing gaussian. The modifications made were to use an 8× 8
kernel for the first convolution layer and the last average
pooling layer and the removal of the first max-pool layer.
Of course, we also changed the Softmax layer to output 121
classes instead of 1000 classes (ImageNet). These changes
allowed us to work with 128×128 pixel images and predict
over the 121 different plankton classes. Using augmenta-
tions similar to those in Phase 3a, we were able to achieve
a validation performance of 0.817 using this model on our
dataset. Submitting the predictions of this model to Kaggle,
we realized a test loss of 0.798.

5. Training
This section describes the general strategy for training

and avoiding overfitting (a recurring issue in convolutional
networks in presence of limited data) along with some de-
tails of training algorithm used.

5.1. Training Algorithm

We trained all our models using mini-batch stochastic
gradient descent with Nesterov momentum as described in
[4]. The batch size varied for different models depending on
GPU memory constraints but typically varied between 32 to
64 training examples. Since the batch sizes were relatively
small compared to the size of the dataset, a momentum of
0.9 was found to help reduce fluctuations in training. All
our model parameters were initialized using the Xavier al-
gorithm for initialization as discussed in [1]. We used a
learning rate of 0.01 at the start of each model and stepped
down to a factor of 0.9 after 10 epochs of the original dataset
(303,360 images). At many instances, the learning rate was
decreased to smaller values by intervening between training
when we noticed that the validation loss stopped changing.
The learning rate mentioned above was that for the non-bias
weights. Bias weights learned at 2× rate.

5.2. Regularization

Since a large part of performance was to introduce ways
of reducing overfitting, we considered many approaches.
Firstly, adding data augmentations was found to reduce the
gap between training and validation loss by improving val-
idation performance. However, many times this was insuf-
ficient was generalization. Thus, we had drop-out layers in
place after the fully connected layers to regularize the model
further. A drop out value of 0.5 was found to perform best

4

in ClassyFireNet while dropout values of 0.4 and 0.6 were
found to be better in the GoogLeNet model. We also ex-
perimented with the weight decay values ranging from 0.01
to 0.00001 to regularize further and found a weight decay
value of 0.0001 to perform best.

5.3. Strategy

The strategy we used for training regardless of model can
be succinctly put in the following way:

1. Design a convolutional network
2. Train without any data augmentations
3. If no overfitting occurs, end training and design a

deeper convolutional network
4. If overfitting does occur, sequentially introduce data

augmentations and resume training (See Figure 4).
5. After best augmentations have been identified, tune

hyper-parameters (such as learning rate and weight de-
cay) and resume training

Figure 3. Reducing overfitting using data augmentations

6. Feature Generation for Random Forests

After we created the two convolutional networks de-
scribed above, each with logloss near 0.80, we decided to
try using our convolutional networks just for feature gener-
ation. We extracted the 512 features from the first fully con-
nected layer (post-ReLU) from the ClassyFireNet for our
entire training dataset. Similarly, we also extracted features
from the GoogLeNet’s fully connected layer.

Figure 4. CNNs as feature extractors

The features generated above were then used as training
data along with the true labels for a random forests classi-
fier. This idea can be seen in Figure 4 and has also been
explored in recent works – for instance, for plant classifica-
tion [3]. We found that with tree depths of 20-25 and with
10-100 trees, we were able to achieve very high validation
classification rates using the random forests classifier (76-
77%). In comparison, our top two convolutional networks
had classification rates of 71-74%. However, we found that
the logloss of predictions from the random forests was sub-
stantially worse (around 0.92). This was understandable
since the optimization problem solved by random forests
is one that minimizes misclassification rate and not logloss.
We found that the cause of high logloss was the extremely
low probabilities being assigned to the correct class in in-
stances where the classification was wrong. To abate this,
we increased number of trees in the random forest to 500.
While this did not change the classification rate much, it did
improve the performance substantially resulting in a logloss
of 0.81. The improvement was intuitive since 500 trees
were more likely to assign non-zero probabilities to all 121
classes than were 100 trees.

7. Model Averaging
At this point, we had three sets of predictions, each with

similar performance. However, our motivation behind using
random forests was that an if − else type of classifier will
make predictions quite different from those coming from a
fully connected neural network. The diversity of predictions
is crucial for ensembles to be successful.

5

On analysis of our predictions, we found this hypothe-
sis to true. For instance Figure 5 shows the number of test
examples that had their maximum probability (over all 121
classes) assigned to a given value between 0 and 1. We
see that the random forests has far more examples where
the maximum probability is less than 0.5 while the Classy-
FireNet CNN has far more examples where the maximum
probability is higher than 0.5. Given that both predictions
have nearly the same logloss, this plot indicates presence of
diversity between the two models’ predictions.

We also measured the number of examples in which both
methods predicted the same class to be more likely than any
others and found that in 86% of the examples, the meth-
ods agreed on the classification. This again indicates the
presence of diversity in the two models and thus motivates
averaging between the two methods.

We tried multiple types of ensembles. By ”Mean”, we
imply that the probabilities were averaged for each class
for each data point. By ”Max”, we imply that whichever
model had a higher maximum probability (over all classes)
was used for each data point. The different ensembles tried
were:

1. ClassyFireNet + GoogLeNet (Mean)
2. ClassyFireNet + GoogLeNet (Max)
3. Random Forests + ClassyFireNet (Mean)
4. Random Forests + GoogLeNet (Mean)
5. Random Forests + ClassyFireNet (Max)
6. Random Forests + GoogLeNet (Max)
7. Random Forests + ClassyFireNet + GoogLeNet

(Mean)
8. Random Forests + ClassyFireNet + GoogLeNet (Max)
We found that our best test performance was when we

used the mean of the random forests’ and ClassyFireNet’s
predictions.

Figure 5. CNNs as feature extractors

8. Results and Conclusions
As a result of model averaging between predictions of

random forests and the ClassyFireNet convolutional net-

work, we achieved a logloss of 0.75. However, this result
was achieved after the deadline of the competition and thus
our best rank (out of 1049 contestants) at the end of the
competition was 125 (logloss 0.77, top 12%) and after it
ended was 103 (logloss 0.75, top 10%).

Figure 6. Team Classy Fire’s best entry on Kaggle

We learned from winners of the competition (logloss
0.56) that in presence of real-time data augmentation, our
performance could have been even better. There is even
room for more experimentation with the use of leaky ReLU
units instead of ReLU units along with additional pooling
techniques.

Another area of exploration could be the use of other
classifiers on the features extracted from the CNNs, such as
Support Vector Machines (SVMs) and Gradient Boosting
Machines (GBMs). For instance, GBMs have the advantage
of variable optimization objectives (e.g. we can minimize
logloss directly), however the trees require to be sequen-
tially generated and are thus, slow to train.

References
[1] X. Glorot and Y. Bengio. Understanding the difficulty of train-

ing deep feedforward neural networks. In International con-
ference on artificial intelligence and statistics, pages 249–256,
2010.

[2] K. Simonyan and A. Zisserman. Very deep convolutional net-
works for large-scale image recognition, 2014.

[3] N. Sunderhauf, C. McCool, B. Upcroft, and P. Tristan. Fine-
grained plant classification using convolutional neural net-
works for feature extraction. In Working notes of CLEF 2014
conference, 2014.

[4] I. Sutskever, J. Martens, G. Dahl, and G. Hinton. On the im-
portance of initialization and momentum in deep learning. In
Proceedings of the 30th International Conference on Machine
Learning (ICML-13), pages 1139–1147, 2013.

[5] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov,
D. Erhan, V. Vanhoucke, and A. Rabinovich. Going deeper
with convolutions, 2014.

6

