Plankton Image Classification

Sagar Chordia
Stanford University

sagarcl4@stanford.edu

Abstract

This paper is in response to the National Data Sci-
ence Bowl’s automated Plankton image classification prob-
lem. It evaluates the performance of many different exper-
iments run on medium-architecture Convolutional Neural
Networks.

Experiments evaluated include different architectures,
feature extraction from multiple architectures followed by
linear and non-linear classification, data augmentation and
model ensembles. The experiments together yield a classifi-
cation accuracy of 70% and multi-label log loss of 1.15 on
validation set.

The learned approaches can be ported to deep ConvNets
as future work for significant improvements.

1. Introduction

Given a supervised sample dataset of types of plank-
tons, we are applying Convolutional Neural Networks for
image classification. Recent advances in neural networks
have showed that CNN with various techniques perform ex-
tremely well for image classification as they learn complex
detectors. Convolutional filters operate on localized region
of images and multiple layers in CNN can combine several
localized regions and can understand the complete image in
entirety.

' |
4 6/
Figure 1. Sample Images from three plankton classes

2. Background
2.1. Dataset

Hatfield Marine Science Center at Oregon State Univer-
sity provided 30,458 manually labelled images of planktons

Romil Verma
Stanford University

vermar@stanford.edu

as training set and another 130,401 plankton images as the
test evaluation set. Each of the images are classified into
one of the 121 classes of planktons, including different un-
known class of images grouped together based on shape.
The distribution graph shows that distribution of training
images is skewed and hence model learns less about the in-
frequent classes.

20 4 80 EJ 100 120

Figure 2. Distribution of number of images per class

2.2. Evaluation Metrics

We used a 90%/10% split of the 30,000 images training
dataset into train and validation sets. Given very small avail-
able dataset, to improve model robustness a 90% train split
was necessary. K-fold cross validation was unfeasible given
training is very expensive in terms of computation and also
time. The validation split was used for our own evaluations
in approaches below. The models were evaluated on two
metrics - the validation accuracy and multi-class validation
loss. The loss is defined as -

| NoM
logloss = N Z Zyij log ps;

i=1 j=1

where N is the number of test images, M is number of
classes, y;; indicates if observation ¢ is in class j and p;; is
learned probability that observation ¢ is in class j.

SN Uy = 3]

accuracy =
N

where N is the number of test images, y; indicates class
of observation ¢ and y; indicates true class of observation ¢

3. Approach

e We experiment with different layered self-trained Con-
volutional Neural Networks, varying them from 2 lay-
ers to 6 and using them as base models for many of our
experiements.

e Given the base models and pretrained models from
AlexNet [1] and BVLC GoogleNet [2], we experiment
with transfer learning and training a softmax classifier
as the final layer.

e We try to extract penultimate features from the base-
line and pretrained models, combine them and train
a single linear classifier on top. The premise of this
approach was not to take the better predictions of the
different Softmax layers but to let the Classifier make
a single prediction given more features.

e We tweak the hyper-parmeters such as RMS momen-
tum, dropout, learning rate, regularization penalty and
filter size for our experiments.

e We also try model ensembles using the best learned
models so far.

4. Experiment
4.1. Uniform probability

As a baseline we performed this experiment where im-
ages can belong to any of 121 classes with uniform proba-
bility. Thus each image is classified randomly into one of
the classes with uniform probability which gave log loss of
4.79 comparable to 10 percentile on the Kaggle competition
leaderboard.

4.2. Data Augmentation

We performed some experiments where we tried to aug-
ment data with methods like random rotation, random crop
and random contrast. Since all images are in grey-scale we
didn’t try random tint. Almost all images have single cen-
tral object and hence cropping didn’t tend to help. Between
rotations and contrast, we observed that random rotations
was the most effective data augmentation technique.

4.2.1 Rotation

Randomly rotating images by 90, 180 or 270 degress
helped, given images are orientation agnostic, hence it is
very possible that any rotation of the planktons should clas-
sify to correct class. We augmented the data by sampling
50% of images, randomly rotating them and then sampling

same number of images in as in the original training set for
training the model.

Validation accuracy w.r.t. epochs
0.65 ; ; .

T T
5-layer Baseline —+—
Data Augmentation —x—

]

o
o 4
o o
T T

|

Validation softmax accuracy
o
o
T
1

04 I L L 1 I I
0 1 2 3 4 5 6 7

Number of epochs

Figure 3. Validation Accuracy for Baseline and Augmented Train
Set

Data augmentation on average gives 2.2% improvement
on validation accuracy per epoch and getting as high as 4%
improvement in one.

4.3. Convolutional neural network

We performed various experiments on CNN, some major
of them are noted here:

4.3.1 Number of layers in CNN

We experimented with 2,3,5,6 layers in CNN network.
There was clear increase in log loss and validation accuracy
as number of layers were increased from 2,3 to 5. 6-layered
network improved training accuracy but didn’t improve
validation accuracy implying overfitting. But on addition
of augmented data 6-layers did show improvement over
5-layer.

Since number of training examples are 30k huge CNN
architecture is expected to overfit. This can be avoided
by increasing the number of training samples by data
augmentation.

We started training more complicated architectures (>
10 layers) on GPU instances in terminal.com. But because
of frequent downtime of GPU instances, we decided to
abandon terminal.com and instead use local machine to
train networks. Because of CPU mode on local machine,
we stopped at 6-layer ConvNet and decided to show
improvements using this as baseline.

The shallower ConvNets converge in terms of accuracy
and loss much faster than the deeper ones. Further, the
deeper ConvNets 5-layer gave better results for both met-
rics. ConvNet running for 6 epochs achieves an accuracy of
61% and validation loss of 1.35

Validation accuracy w.r.t. epochs

1 T T T T T T
2-layer —+—
3-layer —x<—
5-layer —x—
0.8 |- 6-layer -

o
=Y

o
~

Validation accuracy

0.2

0[L L L L L L
0 1 2 3 4 5 6 7

Number of epochs

Figure 4. Validation Accuracy of 2,3,5,6 layer convnet models

Validation loss w.r.t. epochs
5 T T T T T

Z»Iayér —
3-layer —x—
5-layer —x— |
6-layer

Validation softmax loss

0 1 2 3 4 5 6 7
Number of epochs

Figure 5. Validation Loss of 2,3,5,6 layer convnet models

4.3.2 RMS momentum, dropout parameter, filter size

Parameter sweep on 5 and 6 layer network indicated 0.9 as
best value for RMS prop and 0.8 value for dropout [3]] Liter-
ature suggests that smaller values for filter tend to perform
better for deeper network. We observed that for our archi-
tecture (max 6 layers) however filter size of 5 performed
best.

4.3.3 Learning rate

Log Loss was plotted as function of number of iterations
and the shape of resulting curve was used to tune learning
rate. When Ir was too small, loss decreased very slowly and
when Ir was too large loss function had very steep decrease.
Learning rates for each architecture was chosen so that loss
function obeys approximately exponential decay.

4.3.4 Regularization

We plotted training accuracy and validation accuracy
against number of iterations to tune regularization(reg) val-
ues. When the gap between training accuracy and validation
accuracy was high (training > validation) it indicated large

overfitting on dataset and hence indicated low regulariza-
tion value. Value was chosen to minimize the gap between
two curves but also increase validation accuracy.

4.4. Linear classifier on top of CNN

Typically we observed that increasing number of epochs,
training accuracy for model improved but at the cost of in-
creased training time. Hence the motivation for these ex-
periments was to train last layer of ConvNet for many more
iterations as compared to CNN. So we conducted series of
experiments by using the activations of CNN as features to
linear models.

Validation loss w.r.t. epochs
5 T T T T T

T T
best-CNN —+—
softmax-classifier-on-best-CNN —x<— |

Validation loss

Number of epochs

Figure 6. Improvement in loss with linear classifier on top of CNN

Validation accuracy w.r.t. epochs

o
©

' ' ‘ " best-CNN ——
softmax-classifier-on-best-CNN —x— _|

Validation accuracy
o o o o o o
w » (s, o ~ @
T T T T T T
1 L I L L

o
[N}
T
1

o
T
1

1 1 1 1
3 4 5 6 7
Number of epochs

o
o
Ny

Figure 7. Improvement in accuracy with linear classifier on top of
CNN

4.4.1 Features from CNN trained earlier

We fetched 128 dimensional feature vector from a convnet
we trained before (2/3/5/6 layer CNN) and trained softmax
classifier on these features. Typically we observed improve-
ment of about 5-6% on validation accuracy by having sepa-
rate linear layer on top of each architecture.

4.4.2 Features from standard CNN (BVLC reference
model)

High level idea was to extract features from pre-trained
standard architectures. In this experiment we ran our dataset
on BVLC reference model in Caffe and used second last
layer activations as features. Since BVLC expects size of
256 x 256 we resized our images to that size. Softmax
trained only on these extracted features didn’t show any im-
provement, the max performance achieved was 45%. Pos-
sible reasons could be -

Loss of precision. Original images typically of 50 x 50
were resized to 256 %256 and thus had significant loss of
precision.

Sparse features. The features learned were of 4096 di-
mension and were very sparse. Typically one needs lot of
data for training of sparse features but limited size of 30k
images posed a challenge to us.

4.4.3 Features from multiple CNNS

When we combined features from 2,3,5,6 layer convnet, it
improved the performance by another 2-3%. But careful
anaylsis revealed that using features only from 5 and 6 layer
convnet gave better performance as compared to using fea-
tures from all convnets. This happens because of feature
importance indicating that features coming from 2 and 3
layer convnets added noise.

4.5. Model ensembles

In this set of experiments we tried averaging predictions
from various combination of models. The best performing
ensemble composed of 5 linear classifiers on top of features
coming from 5 and 6 layer self-trained convnet. This en-
semble gave 70% validation accuracy and 1.15 as valida-
tion loss. This performance gives us 1.22 as test log loss
and ranks us in top 30% teams in the kaggle contest.

Validation loss w.r.t. epochs
5 T T T T T

T T
best-model —+—
ensemble —x— |

Validation loss

0 1 2 3 4 5 6 7 8 9
Number of epochs

Figure 8. Improvement in loss because of ensembling various
model predictions

5. Challenges
5.1. Correlation Between Classes

We created a confusion matrix plotting the predicted la-
bels of validation set images and their true labels to see bot-
tlenecks on accuracy.

00
4

] 2 4 6 8 10 2 14

Figure 9. Correlation between True and Predicted labels of 16 most
frequent classes

Upon evaluating correlated classes, we found that some
classes are very highly correlated such as here classes 2, 3
and 4 refer to chaetognath non sagitta, chaetognath other
and chaetognath sagitta. Similarly, classes 11 and 12 refer
to protist noctiluca and protist other. These sets of classes
are physically same so its difficult to accurately predict be-
tween them.

-

7 S

Figure 10. [above] images of protist classes; [below] images of
chaetognath classes

5.2. Shallow ConvNets

Most of our experiments have been run on Shallow
ConvNets as our approach was to try various models and
optimize under that setting assuming that the best working
techniques can easily be ported to a deeper network giving
better accuracy and loss values. [4]

6. Future Work
e Use deeper networks trained on better hardware (GPU)

e Incorporate hierarchy of classes in the loss function.
Currently all misclassification are treated equally. But
since entire taxonomy of classes is available we can
potentially penalize the misclassification based on dis-
tance between two classes.

e Since ensemble of linear classifier improved perfor-
mance, natural extension is to use random forest or any
non-linear classifier on top of features generated from
CNN

7. Conclusion

Convnets tend to perform very well for image classifi-
cation. Data augmentation improves the performance and
reduces the over-fitting on training data. Shallow convnets
with ensemble of linear classifiers on top of it are very good
proxy for deeper convnets.

8. Acknowledgements

Thanks to Kaggle.com for hosting the competition and to
Hatfield Marine Science Center at Oregon State University
for providing the supervised dataset.

9. Supplementary Materials

The source code for the project can be found at
https://github.com/sagarc/plankton_
classification
The teamname on kaggle contest is under name of Sagar
Chordia.

References

[1] Krizhevsky, Alex, Ilya Sutskever, and Geoffrey E.
Hinton. “Imagenet classification with deep convolu-
tional neural networks.” Advances in neural informa-
tion processing systems. 2012.

[2] Szegedy, Christian, et al. ”Going deeper with convo-
lutions.” arXiv preprint arXiv:1409.4842 (2014).

[3] Srivastava, Nitish, et al. "Dropout: A simple way to
prevent neural networks from overfitting.” The Jour-
nal of Machine Learning Research 15.1 (2014): 1929-
1958.

[4] Very Deep Convolutional Networks for Large-Scale
Image Recognition, Karen Simonyan, Andrew Zisser-
man, ICLR 2015.*

https://github.com/sagarc/plankton_classification
https://github.com/sagarc/plankton_classification

