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Abstract

The feedforward networks widely used in classification
are static and have no means for leveraging information
about their context to improve their performance. Atten-
tional models seek to improve upon the standard feedfor-
ward network using recurrence and modifying the network’s
computation. This project explores a simple method of mod-
ifying the feedforward network using dropout to define a
subnetwork within an existin network. Given a trained net-
work and the task of classifying a subset of the original
training classes, are there better subnetworks to than the
full network?

1. Introduction

Natural images rarely consist of single objects, and ob-
jects can often be decomposed and composed into further
more objects. For example, a cat is composed of a head, a
body, four legs, and a tail. A cat’s head has two cat eyes,
two cat ears, a mouth etc. . . . Whether explicit or implicit,
any cat classifier must answer the underlying question of:
What makes a cat a cat? Outside of cats, the classifica-
tion problem faces a problem of scale: How many classes
of objects exist? Feedfoward artificial networks with con-
volutional layers are the current state-of-the-art image clas-
sifiers [5]. These networks are inspired by the hierarchi-
cal layering and localized structure of the mammalian vi-
sual cortex. While state-of-the-art classifiers are beginning
to surpass human performance on such challenges as Ima-
geNet, how can networks be scaled to handle more compli-
cated tasks that involve attributes of objects and relations
between objects [2]? Are we going to train a classifier
network with a category for every single object class and
combination of objects? Such a universal classifier seems
implausible. Another drawback of the feedforward classi-
fiers is that it considers all classes simulataneously. More
concretely, how often are cats, beer bottles, and jet fighters
present in the same scene?

There are still features of the biological visual cortex that
have yet to be used effectively in artificial neural networks.

Namely, the visual processing system of the cortex is not
only feedforward but also contains top-down feedback path-
ways that modulate lower levels of the processing hierar-
chy [1] [4]. The goal of this project is to implement an
efficient means for a top-down control mechanism to alter
a network’s processing in different contexts. Namely, I use
dropout to improve a network’s performance in the context
of classifying only a subset of the classes that a network
was originally trained on. Classifying this subset of classes
defines a subtask. The subset of neurons that remain af-
ter dropout defines a subnetwork. For N potential dropout
units, dropout only requires N bits to define a subnet, mak-
ing dropout a compact means for modifying the behavior
of an existing network. This project seeks to find the best
subnetwork for a given subtask.

2. Background and Related Work

Models such as in [4] use recurrent networks to build in-
ternal models of the image during classification. In contrast,
the method proposed in this project implements an explicit
means of modifying the network based on context.

Dropout was originally proposed as a method to mitigate
overfitting [6]. In class, dropout was described as a kind of
regularization by randomly traversing the space of subnet-
works during training. For a network of N neurons, dropout
explores a space of 2N subnetworks. However, these 2N

networks do not evolve independently as they share many
of their parameters. Since its creation, dropout has been
characterized as a form of adaptive regularization [7].

Transfer learning provides another method of repurpos-
ing a network for a subtask without retraining the entire net-
work.Transfer learning retrains a subset of layers using a
data set different from the training dataset and works be-
cause of the statistical similarities between natural scenes.
However, even when only replacing and retraining a frac-
tion of a many-layered networks, it still seems implausible
that one would maintain separate final layer sets for every
conceivable set of classes.
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Layer Specifications
Conv 3×3×32, stride 1
Pool 2×2, stride 2
Affine 128 fully connected units
Dropout p=.5
Affine 10 fully connected units

Table 1. Model parameters

3. Approach

In this project, I search for the best dropout subnetwork
for a given subtask and compare it to the base network and
with the network retrained with transfer learning. The base
network’s structure is as follows:

Conv - ReLU - Pool - Affine - ReLU - Dropout - Affine
- Softmax

The base network parameters are listed in Table 1. The
base network was trained on the CIFAR-10 dataset [3] un-
til training and validation accuracies were 0.803 and 0.717.
Figure 1 visualizes the raw pixel data and the features ex-
tracted by the above network after training. The features
were extracted from the output of the second ReLU layer.
Although the network manages to increase the degree of
separation of the features relative to the raw image data, the
linear classifier at the end is still not able to generalize over
the full task. The confusion matrix for the base network is
shown in Figure 5, left. Based on the confusion matrix, I
define the subtask used for this project as classifying birds,
cats, and deer, which correspond to class indices 2, 3, and 4,
respectively. These are classes for which the base network
has poor accuracy.

As positioned in the network structure, the dropout layer
zeros out features output from the ReLU layer before they
are used as input to the final linear classifier. For the sub-
task, this can be interpreted as dropping features which are
not beneficial or harmful for classifying the subset of classes
in the subtask. To find units to drop, I use the mean gradi-
ent of the loss with respect to the each of the features on
the training set and select from the units with mean positive
gradient (see Figure 2). Units with mean positive gradient
were sorted in descending order of gradient magnitude and
cumulatively dropped one-by-one to find the optimal set of
units using the validation data set (see Figure 3.

Dropout is equivalent to modifying the final affine layer’s
weight matrix. That is, for feature vector x, the final affine
layer computes

y = Wx+ b

where y is the class scores, W is the weight matrix, and b
are the biases. The dropout units cause the final affine layer
to compute

Figure 2. Gradient of the subtask loss with respect to the features
extracted by the network. Each data point is a training image.
No features contribute positively to the loss for all images, but the
mean gradient can be used to identify units to drop. Note that some
features, vertical white bands in the data cloud, are unused by the
base network’s final affine layer as their gradients are exactly 0 for
all images.

Figure 3. Gradient-based dropout: Subtask validation accuracy as
units are are dropped in descending order of their mean gradient.
Only units with positive mean gradient are considered for dropout.
Dropping the 48 units with the highest mean loss gradient pro-
duced the subnetwork with best validation accuracy on the sub-
task.

y = WDx+ b

where D is a diagonal matrix of 1s or 0s describing
which units were dropped. D can be folded into the final
affine weight matrix to produce WD so that the dropout sub-
network effectively computes y = WDx+b in its final affine
layer.

4. Experiment
The performance of the base network and dropout net-

work were compared on the subtask. Performance on the
subtask is listed in Table 2. For control, I conducted a ran-
dom search over the space of dropout units and used trans-
fer learning to retrain the last affine layer in the classifier.
The performance of subnets with randomly dropped units is
shown in Figure 4. The best subnet found using the mean
gradient to drop units outperforms all of the subnets found
by randomly dropping units. However, transfer learning
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Figure 1. t-SNE visualizations of CIFAR-10 raw pixel data (left) and features extracted from the trained network (right). Although the
network seems to increase separation between the classes, there is still overlap between the features after training.

Figure 4. Performance on the subtask. Transfer learning performs
best, but gradient-based dropout is able to capture part of the per-
formance gains. Random dropout does surprisingly well and out-
performs the base network in many instances.

performs the best on the subtask. That transfer learning per-
forms the best is not so surprising as we’ve previously seen
that the effect of dropout can be folded into the affine layer’s
weight matrix. Images that were misclassified by the base
network but correctly classified by the dropout network and
transfer learning network are shown in Figure 6.

To compare the effect of dropout and transfer learning on
the base network, the weight matrix of the final affine layer
for each configuration is visualized in Figure 8. The matrix
singular values are shown in Figure 7. As expected, trans-
fer learning produces a low rank weight matrix whose rank
reflects the number of classes in the subtask. Likewise, the
optimal dropout subnet effective weight matrix is sparser
than the base network’s weight matrix.

5. Conclusions
The results of this project indicate that dropout can in-

deed be used to modify a network and improve performance
on a subtask. However, there are a number of open ques-

Base network Best dropout subnet Transfer network
0.546 0.695 0.809

Table 2. Subtask classification validation accuracy. Both the sub-
net found with dropout and the transfer learning network outper-
form the base network.

Figure 7. Singular value decompositions of the weight matrices.
Note that transfer learning retraining drastically reduces the rank
of the affine layer weight matrix, which makes the network classify
all objects as one of the subclasses used in the subtask.

tions and directions the project could take in the future.
Namely, what generates the top-down control signal? A full
model of attention model could be comprised of a feedfor-
ward network to classify and a feedback network to mod-
ify the feedforward network’s layer depending on the cur-
rent estimate of the class. More broadly, even if the net-
work were able to reconfigure itself based on a model of
the current input, there remains the question of how a net-
work could learn to create entirely new classes or combine
existing classes.
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Figure 5. Confusion matrices of the base network (left), gradient-based dropout network (center), and transfer learning network (right).
The greyscale is the mean softmax probability for each class. For a network performing well, all of the probability should be centered
along the diagonal. Off-diagonal entries indicate confusion between classes.

Figure 6. Images in the subtask misclassified by the base network and correctly classified by the transfer learning network (left) and dropout
network (right)

Figure 8. Weights of the last affine layer. (Top) Weights after training on all classes. (Middle) Weights after transfer learning on subtask.
(Bottom) Effective weights WD after applying dropout. Transfer learning produces a low-rank weight matrix because of the few classes
used during retraining for the subtask and regularization. In contrast, dropout serves to sparsify the original base network’s weight matrix
as shown by the bands of white. Note that some features went unsused by the base network’s weight matrix as well as the transfer learning
weight matrix.
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