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Abstract

We present a framework that generates a dense
depth map given two rectified RGB images from
a calibrated stereo rig. Unlike traditional meth-
ods for stereo reconstruction, our method is
based on convolutional neural networks and does
not directly incorporate any knowledge of mul-
tiple view geometry.

1 Introduction

Stereo reconstruction methods have been exten-
sively explored since the early days of computer
vision. The main challenge such methods seek to
overcome is known as the correspondence prob-
lem: given two images of the same scene, match
the pixels in the first image to the pixels of the
second one. Usually these reconstruction meth-
ods make use of rectified images in order to re-
duce the dimensionality of this correspondence
search from a two-dimensional search to a one-
dimensional search along the scanlines of the im-
ages [1, 2].

While many algorithms have been created to
solve the correspondence problem, they gener-
ally fall into two broad categories: local methods
and global methods. Local methods tend to be
used in real-time applications where computa-
tional efficiency is valued over accuracy. These
methods often involve minimizing a photomet-
ric error term that is computed from a local
neighborhood of pixels in each image. Many
different scoring functions can be used includ-
ing SAD scores, cross-correlation, L2-norm, etc.
Such methods typically fail in scenes with little
texture or complex lighting conditions and often
result in noisy depth estimates. Global methods
are used when depth estimation accuracy is val-
ued more than computational efficiency and as
such are usually limited to offline applications.
These algorithms typically impose some sort of
spatial smoothness constraint in addition to min-
imizing a photometric error term[3]. However,
even these global optimization methods tend to
produce sub-optimal results with texture-less re-
gions, specular highlights, or complex occlusion
boundaries.
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The goal of this project is to utilize convolu-
tional neural networks as a means of computing
dense depth map estimates from a stereo camera
system. We believe this leads to a nice compro-
mise between the accuracy of the reconstructions
and the computational efficiency of producing
such depth estimates. Additionally, we believe
that deep learning methods may help in provid-
ing robustness to challenging cases such as spec-
ular highlights, texture-less regions, and partial
occlusions.

2 Related Work

Convolutional networks have recently been ap-
plied to the task of depth estimation. Eigen
et al.[4] use a multi-scale convolutional network
to perform monocular depth estimation, where
the low-resolution scales are used to perform
coarse depth estimates and high-resolution scales
are trained to perform local depth refinements.
Zbontar et al. [5] utilize convolutional net-
works as a means of determining correspond-
ing patches in left and right stereo images, but
rely on traditional stereo reconstruction methods
such as semi-global block matching to estimate
the depth at each pixel. Liu et al. [6] make
use of convolutional networks to learn the bi-
nary and unary potentials for their conditional
random field (CRF) framework for the task of
single image depth estimation. Sun et al [7] ex-
tract sparse feature vectors from monocular in-
frared images and train a fully-connected neural
network with a single hidden layer to produce
dense depth estimates.

Figure 1: Sample scenes from our procedurally
generated dataset.

3 Problem Statement

Formally, our problem is defined as follows:
given two RGB images, IL and IR, taken from a
a rectified stereo camera rig with known intrinsic
and extrinsic camera parameters, we would like
to estimate a new monochrome image D̂ where
each pixel value is the depth estimate for the cor-
responding pixel in IL. The subscripts L and R
represent the left and right images respectively.

4 Dataset

Conventional stereo reconstruction datasets (for
instance, the Middlebury Stereo Vision dataset)
usually contain very few training examples with
ground truth depth data. However, convo-
lutional neural networks require significantly
larger amounts of training data, making most
stereo datasets impractical for training. As a
result, we opted to generate a synthetic stereo
dataset for training our networks. Figure 1
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shows a couple of sample scenes along with the
corresponding depth maps for our procedurally
generated dataset.

Our synthetic dataset consists of 60,000 im-
ages. This is split into 50,000 for training and
10,000 for validation. The left and right images,
IL and IR, are rendered as 8-bit 320× 240 RGB
PNG images, while the depth map, D, is ren-
dered as a single channel 8-bit PNG image. We
decided to restrict ourselves to the Manhattan
world assumption[8]. The scenes consist of a
cubcic room with plane aligned cubic geometry.
The shape and color of the room as well as its
contents are randomized. The position of the
objects within the room is randomized as well.
Finally, the viewpoint is randomized as well, sub-
ject to the rules described below.

The following rules are used for randomiza-
tion:

• The value/brightness component of the ran-
domized colors are clamped, so as to pre-
vent near-black colors. No restrictions are
imposed on the hue component.

• The object sizes are clamped to prevent ex-
tremely skewed aspect ratios.

• The objects are plane-aligned (floor, walls,
ceiling).

• The objects are allowed to have arbitrary
in-plane rotations.

5 Network Architecture Exper-
iments

We implemented and analyzed two convolutional
neural network architectures for depth estima-
tion. In this section, we describe and analyze
both of these in detail.

Figure 3: The depth-map estimate generated by
the first architecture. On the left is the ground
truth, while on the right is our network’s esti-
mate.

5.1 Architecture I

The first architecture (shown in 2) is largely
based on the original AlexNet implementation
[9]. The left and right 3 channel 304 × 228
RGB images (produced by taking the center crop
of the original 320 × 240 images) are concate-
nated along the channel dimension to produce
the 6 × 304 × 228 input. For regression, we use
an Euclidean loss layer (the L2 norm of the dif-
ference between the estimated and the ground
truth depth map):

Loss =
1

2N

N∑
i=1

|| D̂(i) −D(i) ||22

where N is the batch size. Conceptually, this
architecture is similar to the first scale level of
[4], only with a L2 loss function rather than a
logarithmic loss function.
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Figure 2: Network diagram for the first architecture.
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Figure 4: Network diagram for the second architecture.

5.2 Architecture II

Our second architecture is fully convolutional, as
shown in figure 4. We discard the max-pooling
and fully connected layers for a series of convo-
lutional layers with decreasing kernel sizes inter-
leaved with rectified linear units. A unit stride
along with an appropriate amount of padding is
used to ensure that the spatial dimensions re-
main the same at the output of each layer. Due
to memory constraints, we are conservative with
the number of outputs for each convolutional
layer (as shown in figure 4).

6 Implementation

6.1 Procedurally generated dataset

Our prodecural stereo scene generator was im-
plemented using C++ and OpenGL. The depth
maps were generated using a custom GLSL
shader. The rendered frames were stored as

Figure 5: The depth-map estimate generated by
the second (fully convolutional) architecture. On
the left is the ground truth, while on the right is
our network’s estimate.
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Architecture RMSE

Modified AlexNet 0.098

Fully Convolutional 0.033

Figure 6: Root-mean-square error between the
estimated and the ground truth depth-maps for
the two architectures.

LMDB databases. Besides mean subtraction,
the rendered images were not preprocessed in
any other way.

6.2 Network

We implemented and trained our networks using
Caffe [10], an open-source framework for convo-
lutional neural networks developed by the Berke-
ley Vision and Learning Center. Each network
was trained for two days on an Nvidia K40 GPU.

7 Results and Analysis

7.1 Overview

We found in practice that the fully convo-
lutional architecture consistently outperformed
the original AlexNet-inspired architecture de-
scribed above. Table 7 compares the RMSE
(root-mean-square error) for each network. We
are able to achieve lower error rates with our
fully convolutional network than our initial net-
work architecture. In addition, we are also able
to produce smooth depth estimates in texture-
less regions where traditional stereo reconstruc-
tion methods typically fail. Empirically, the
depth maps produced by our improved network
are reasonably close to the ground truth, but
contain ringing-like artifacts around the silhou-
ettes of small objects and black regions near the
borders of our images. We believe the black bor-

ders are caused by the use of zero-padding along
the input edges and are amplified by the large
filter sizes in the initial convolution layers.

For training, we experimented with both
Stochastic Gradient Descent with momentum,
as well as AdaGrad. We found SGD with mo-
mentum outperformed AdaGrad, which tended
to plateau early.

Below, we analyze each of the architectures in
detail.

7.2 Architecture I

We found that this network tended to produce
depth estimates that were accurate at a global
level, but was unable to learn complex geome-
try. In addition to this, fine details tended to be
washed out and small 3D shapes often would be
missing entirely from the resulting depth maps.
We believe the primary cause of this was due to
the aggressive nature of the max-pooling layers.

7.3 Architecture II

The second architecture produced significantly
improved depth estimates. We attribute this im-
provement to the following:

1. Stereo has a fixed range of accuracy gov-
erned by the maximum expected disparity.

While mathematically the relationship be-
tween disparity and depth holds regardless
of where each 3D point falls on each image
plane, there are practical limitations that
effectively bound the range of depth values
that can be observed. For instance, very
small disparity values will be limited by the
resolution of each camera sensor and ob-
taining accurate estimates for points very
far from the camera rig will not be possible.
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Similarly, very large disparities may not be
directly observable in both sensors, thus re-
ducing the effective range of the stereo sys-
tem. However, for most indoor scenes, nei-
ther of these extreme cases hold true and
generally the distribution of disparities lies
within a narrow window of values.

2. Max-pooling tends to wash out fine-grained
details.

The main advantage of pooling is to reduce
the size of the input volume and thus has
the added benefit of reducing the number
of parameters for fully-connected layers in
the network. For our particular applica-
tion, reducing the size of the input was not
desirable and empirically we observed that
max-pooling tended to discard useful high-
frequency depth information. Because of
this, we believed it would be advantageous
to remove pooling entirely and preserve the
original input size of the data.

The two observations listed above moti-
vated us to create a new convolution net-
work that relied solely on convolution layers.
A diagram of our network is shown above.
Essentially, our network makes use of large
filters for the initial layers and slowly re-
duces the filter sizes, while increasing the
depth of each successive layer. The motiva-
tion for creating this architecture was that
we believe that larger filter sizes allow the
network to search for large disparities, while
smaller filter sizes allow the network to es-
timate small disparities. By slowly reduc-
ing the filter sizes at each successive layer,
we are in a sense able to incorporate global
depth information into our model without
incurring a large increase in the number

of parameters introduced by fully-connected
layers.

Future Work

This project has just scratched the surface of
what is possible. We believe that there are many
other exciting directions to take our research in
applying convolutional networks to traditional
3D computer vision problems. One possible ex-
tension could be to apply our method to stereo
videos and incorporate temporal constraints into
the depth estimation process. Another applica-
tion could include regressing on other features
of the scene, such as the scene’s reflectance field
and making use of stereo depth estimates as a
prior to guide the reflectance field decomposi-
tion. Additionally, we could make use of our
dense depth estimation as an initial estimate of
the scene geometry for use in structure-from-
motion algorithms.

It would also be interesting to analyze to what
degree the network is learning “stereo features”.
Repeating our experiments with just the left
channel should yield informative results.

Conclusion

We have demonstrated that convolutional net-
works can be used to map RGB pixels from
stereo images directly to depth values. In con-
trast to traditional stereo-based reconstruction
techniques, our method is capable of reconstruct-
ing texture-less regions in the scene and does not
rely on explicitly searching for pixel correspon-
dences in each image.
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