
CS231N Course Project Report
Classifying Shadowgraph Images of Planktons Using Convolutional Neural

Networks

Shane Soh
Stanford University

shanesoh@stanford.edu

1. Introduction
In this final project report, we will document our solution

to the National Data Science Bowl hosted by Kaggle [5].
The Data Science Bowl is an image classification task that
involves classifying shadowgraph images of planktons into
their various taxonomic classes.

Our solution uses convolutional neural networks and
achieved a logloss score of 0.885346 and a position of 165
out of 1049 teams at this time of writing.

1.1. Motivation

Planktons are critical to the health of marine ecosystems.
They form the foundation of aquatic food webs and the loss
of plankton populations often result in devastating ecolog-
ical consequences. Measuring plankton population levels
around the world allows us to better understand the health
of our worlds oceans.

A current method of measuring plankton populations in-
volves towing an underwater camera system that captures
microscopic images over large study areas. However, man-
ual analysis of these images is infeasible as it would take
more than a year to manually label the images captured in a
single day. Therefore, there is a great need to automate the
analysis of these images.

1.2. Related Work

Current leading results in the area of plankton classi-
fication uses support vector machines [1], shallow neural
nets [2] and random forest-based approaches [3] that have
67% - 83% classification accuracies. This, along with one
of the earliest plankton imaging systems - the Video Plank-
ton Recorder (VPR) [4], remains among the most widely
used approaches for plankton imaging today. However,
there have been little to no documented attempts of us-
ing deep learning for automated plankton classification to
date. This Kaggle competition also sets a precedent by hav-
ing one of the largest labeled dataset of plankton shadow-
graph images. These reasons in turn provide a great moti-

Figure 1. Some examples of images in the training set

vation for using convolutional neural networks (which have
demonstrated high performances in various visual recogni-
tion tasks) in this domain of automated plankton classifi-
cation which has otherwise seen little applications of deep
learning.

2. Problem Statement
2.1. Dataset

For this competition, 30,336 labeled training images and
130,400 unlabeled test images were made available by the
organizers. These images are greyscale shadowgraph im-
ages of planktons which were extracted through an auto-
matic segmentation and cropping process. As a result, each
image contains a single organism/entity and vary in dimen-
sions. There is a total of 121 different labels, i.e. taxonomic
classes, for these images. Figure 1 shows an example of
some of the training images.

There are several characteristics of the data that make
this task difficult:

• Training examples are limited and overfitting is a real
concern, especially considering that there are 121 dif-
ferent possible labels.

• Representatives from each class can have any orienta-

1



tion within the 3D space, resulting in very different-
looking images within the same class.

• Some of the classes look very similar to each other that
experts have a difficult time labeling them.

• The automatic segmentation process introduced cer-
tain block-like artifacts which complicates the feature
learning process.

2.2. Competition Details and Evaluation Metric

The competition task is to build a model that assigns all
121 class probabilities to the given test images. Evaluations
are done via online submissions to the Kaggle servers, af-
ter which each submission is scored and ranked on a pub-
lic leaderboard. Submissions are evaluated using the multi-
class logarithmic loss as such

logloss = − 1

N

N∑
i=1

M∑
j=1

yij log(pij)

where N is the number of images in the test set, M is the
number of class labels, yij is 1 if the observation i is in
class j and 0 otherwise, and pij is the predicted probability
that observation i belongs to class j.

The log-loss scoring metric penalizes heavily for wildly
wrong guesses and suggests a need to be conservative in
our predictions. This also means that an overfitted model is
particularly detrimental to logloss than it is to classification
accuracy. For instance, we had models that performed better
in terms of validation accuracy but performed much worse
in terms of logloss as a result of overfitting.

3. Overall Approach
Our solution utilizes Caffe [6], a deep learning frame-

work developed by UC Berkeley, and scikit-image for pre-
processing and augmentation.

We also adhered to the rules of the competition which
prevents the use of external data, i.e. no transfer learning
and finetuning of existing models trained on other datasets.
Additionally, the benefits of transfer learning are quite lim-
ited in this case as it would inevitably involve training the
model from activations very early in the network, given that
the image dataset for this task is highly niche and domain
specific.

Our overall strategy for the competition is as follows:
build successively larger and deeper networks until we can
overfit the training data, then subsequently employ vari-
ous techniques to reduce overfitting. Various evaluation
methods were also used (e.g. plotting loss curves, train-
ing/validation accuracies, visualizing first-layer filters, etc)
to diagnose each model and to decide how to best improve
each model.

4. Data Preprocessing and Augmentation
Data augmentation was crucial in achieving good results

in this competition given the relatively small training set.
We found that, on average, data augmentation increased
validation accuracies by approximately 10% and dropped
logloss by approximately 0.2.

4.1. Resizing and Random Cropping

The original images are of various dimensions, typically
less than 100 pixels on the longer edge. The images of long
planktons are usually rectangular while the images of blob-
like planktons were more square.

We experimented with both preserving and forgoing as-
pect ratio when resizing images and found that both meth-
ods rendered very similar performances. This is largely
because preserving aspect ratios led to images with large
amount of empty space which hindered learning, while for-
going aspect ratios led to class confusions between classes
that became similar after resizing (e.g. a long plankton
looking very similar to another blob-like plankton after re-
sizing).

We eventually chose to resize the images to 64x64 while
forgoing aspect ratios. The resized images were then ran-
domly cropped to 48x48 for training.

4.2. Mean Subtraction and Scaling

Figure 2. Calculated mean image from all training images

We calculated and subtracted the mean of all pixels
across each image. We verified the correctness of the mean
image by plotting it as shown in Figure 2. This result makes
sense as most, if not all, of the input images had the object
of interest centered in the image with whitespaces around
it.

We also scaled the pixel values from [0, 255] to [0, 1].

4.3. Affine Transformations and Jittering

We augmented the data with various transformations:

• Scaling: uniformly sampled from 1
0.8 to 1

1.2 ; we were
conservative with scaling as shadowgraph imagery
generally produces images that are invariant to scale

2



• Rotation: uniformly sampled from 0 to 360 degrees

• Shearing: uniformly sampled from -15 to 15 degrees

• Flipping: Bernoulli probabilities of flipping up/down
and left/right

• Gamma jittering: gamma value uniformly sampled
from 0.8 to 1.6; we were conservative with chang-
ing gamma as increasing it too much exacerbated the
block-like artifacts in the images

The data augmentation was performed offline by ran-
domly generating 3 augmented images per training image,
resulting in an augmented training set that has 121,344 im-
ages, i.e. four times the given training set. This dataset is
then divided into a 75/25 training/validation split, where the
training set consists entirely of the augmented images and
the validation set consists of all the original training images.

5. Early Attempts
The first architecture that we explored is very similar

to LeNet as used to classify the MNIST digit handwriting
dataset [7] to great success. This was motivated by the
similarities between our dataset and the MNIST dataset, in
that they both consist of grayscale domain-specific images
(and not ”natural” images as in ImageNet).

The network is made up of four layers: the first
two are convolutional layers and the last two are fully-
connected layers as such: [conv-ReLU-pool]x2 -
[fully-connected] - [fully-connected] -
[softmax]. The convolutional layers have 20 and 32
number of filters respectively. The two fully-connected
layers have 500 and 121 neurons respectively. The network
was trained using stochastic gradient descent (SGD) with
momentum. This model achieved approximately 65%
training accuracy and 55% validation accuracy and a
relatively high logloss of approximately 1.5. The model
clearly lacked to capacity to overfit the training set and
indicated the need for a network with greater capacity.

Our subsequent larger and deeper networks achieved
higher training and validation accuracies (approximately
85% training accuracy and 70% validation accuracy). How-
ever, these networks were generally overfitted and resulted
in lower but still undesirably high loglosses of 1.3.

We will now discuss two of our best performing models
and the various techniques we used to reduce overfitting and
achieve a 0.8 logloss.

6. Best Performing Models
Overview Our two best performing networks were of
very different architectures and performed in the low 0.9
logloss range after controlling for overfitting. The first of

the two is an AlexNet-like network with 7 layers and in-
corporates many features of AlexNet [8], including local
response normalization layers and dropouts. The second
best performing model is a ”Tiny VGGNet [9]” that utilizes
a homogeneous architecture and consecutive convolutional
layers – however, we significantly reduced the number of
filters and layers to make training tractable. We also see
later that averaging across an ensemble of these two differ-
ent network architectures led to significant improvement in
results.

Training Both models and their variants were trained us-
ing SGD with Nesterov momentum (fixed at 0.9). All mod-
els were trained on a learning rate schedule starting at 0.01
with step decreases by factor of 10 every 20,000 iterations.
All models were trained to convergence, i.e. once changes
in validation accuracies fall within a threshold for repeated
iterations.

Initialization All weights were initialized using the
Xavier algorithm as described by Glorot and Bengio [10].
This initialization method automatically determines the
scale of initialization based on the number of input and
output neurons by drawing them from a Gaussian or uni-
form distribution with zero mean and a specific variance of
V ar(W ) = 1

nin
where W is the distribution of the neu-

ron and nin is the number of neurons feeding into it. Intu-
itively, this initialization method allows the signal to propa-
gate deep into the network.

6.1. AlexNet-like Model

Figure 3. AlexNet-like model that has one less convolutional layer,
less filters and no grouping

The first of our two best models is an AlexNet-like net-
work with 7 layers: 4 convolutional layers and 3 fully-
connected layers as shown in Figure 3. This model is sim-
ilar to AlexNet except for one less convolutional layer, half
the number of filters, no grouping and the use of smaller fil-
ters in the second layer. These changes in architecture were
made as our input images are far smaller (i.e. 48x48) com-
pared to 256x256 that AlexNet was designed for. It also

3



made training less computationally intensive given limited
hardware and resources.

Figure 4. Training and validation accuracies for AlexNet-like
model across training iterations

All convolutional layers include a ReLU nonlinearity,
followed by 2x2 max-pooling and local response normal-
ization (as detailed in Krizshevsky et al’s 2012 paper [8]).
Local response normalization has been shown to be use-
ful when used with neurons with unbounded activation (e.g.
ReLU) [8]. It effectively performs a type of regularization
that encourages ”competition” for big activities among local
regions of neurons, and models a form of lateral inhibition
found in real neurons. The fully-connected layers feature
dropout with a probability of 0.5 and the loss function in-
cludes L2 regularization of 0.0005. As shown in Figure 4,
these techniques combined substantially reduced overfitting
and resulted in a model that has approximately 75% training
accuracy and 65% validation accuracy. This model gave a
logloss of 0.993999.

Figure 5. Visualization of the filters in the first convolutional layer

Visualizing the filters in the first convolutional layer (see
Figure 5) shows that the network learned various frequency
and orientation-specific kernels, as well as certain blob-like

kernels. These learned filters are very similar to the color-
agnostic filters learned in the first group (i.e. the first 48
filters) in AlexNet [8]. The existence of many more blob-
like filters is expected given the nature of the training im-
ages and suggests that the network has successfully learned
these more discriminative features.

6.2. "Tiny VGGNet" Model

We hypothesized that the aggressive pooling in our first
model might have eroded too many features too quickly
given the small dimensions and the fine features in our in-
put images. Furthermore, we wanted to experiment with an
architecture with greater depth. We chose to build a model
that has a similar architecture to VGGNet [9] in that it con-
tains several consecutive convolutional layers separated by
ReLU’s and has a homogeneous structure containing only
3x3 convolutions and 2x2 max-pooling from the beginning
to the end. However, we significantly reduced the number
of filters and layers (while still making it deeper and with
more filters than our previously described model) to make
training the model tractable.

Figure 6. VGGNet-inspired architecture featuring consecutive
convolutional layers and homogeneous structure

As illustrated in Figure 6, this model contains 8 layers:
5 convolutional layers and 3 fully-connected layers. The
biggest difference between the two models are the con-
secutive convolutional layers separated by minimal max-
pooling. The biggest motivation behind this architecture
is so that the finer features (which typically are the most
discriminative features) in the training images can be better
preserved with more conservative pooling. We also doubled
the number of filters in all the convolutional layers.

All convolutional layers have 3x3 kernel size with stride
1 and pad 1, and include ReLU nonlinearities. All max-
pooling layers are 2x2 with stride 2 and no padding.

As shown in Figure 7, this model achieved a training
accuracy of approximately 80% and a validation accuracy
of approximately 65%. The figure also shows an accept-
able but higher level of overfitting compared to the previ-
ous model. The best logloss achieved using this model is
0.949342.

4



Figure 7. Training and validation accuracies for tiny VGGNet
model across training iterations

7. Model Averaging
As commonly practiced in various visual recognition

tasks, one reliable approach to improving model perfor-
mance is to average across augmented images as well as
across model architectures. Intuitively, this can be thought
of as getting a ”second opinion” from various other models
so as to reduce the variances in the predictions. The im-
provement as a result of averaging is especially dramatic
when using the logloss metric as logloss penalizes very
heavily for predictions that are highly inaccurate; averaging
hedges against the risk of any one model making particu-
larly bad predictions.

7.1. Averaging Across Augmented Test Images

For each individual model, we made our predictions
based on 10 random crops and flips of each test image. The
predictions are then uniformly averaged across these 10 pre-
dictions. By averaging across augmented test images, we
reduced logloss by close to 0.2.

7.2. Averaging Across Ensemble of Models

Table 1. Comparison of Ensembles of Top-k Models

Top-k Models Logloss

5 0.903371
4 0.900150
3 0.885346
2 0.891029

We also averaged the predictions across an ensemble of
models consisting of variants of our two best performing
models (as described in the previous section). In particular,
our best performing ensemble consists of uniformly averag-
ing across the three best performing models:

• AlexNet-like model as described above

• AlexNet-like model without random cropping and us-
ing 64x64 input images

• Tiny VGGNet as described above

This ensemble gave our final logloss of 0.885346, about 0.5
to 1.0 logloss better than any individual model. This rel-
atively high improvement can be attributed to the averag-
ing across two very different models and their variants, i.e.
AlexNet-like and Tiny VGGNet.

7.3. Other Possible Averaging Strategies

We also came up with several other averaging strategies
but unfortunately did not have the time to implement them.
For instance, we considered using the most confident pre-
dictions for each test image, which is a risky approach but
can potentially increase our score drastically. We also con-
sidered using a weighted average of the models based on a
linear regression to reduce validation error.

8. Additional Analyses and Observations

In this section we document some of the more interesting
observations we made. Many of these observations are a re-
sult of various experiments we did in our attempt to improve
our existing models.

8.1. Grouping

We originally trained our AlexNet-like model from
scratch using a grouping of 2 as per Krizshevsky et al’s 2012
paper [8]. We found from our own experiences that the use
of grouping led to slightly deteriorated performance. We
however have not done a thorough experiment to quantify
this differences in performance.

Our understanding of Krizshevsky et al’s use of grouping
is so that they could fit their model into the memory con-
straints of the GPUs at that time. As such, we believe that
there is little use for grouping for our purpose (or when us-
ing modern GPUs with sufficient memory to fit most mod-
els).

Figure 8. Visualization of all 96 filters in an AlexNet-like model
with groups. Notice that only half the filters have converged.

5



We however noted an interesting observation where ex-
actly half the filters, i.e. one of two groups of filters, con-
verged properly while the other half did not (see Figure 8).
This is despite training the model for several epochs be-
yond the convergence of its validation accuracy. This is very
likely the result of setting the grouping parameter to 2, re-
sulting in only the first group learning. When we tried using
the same number of filters (i.e. 96 first-layer filters) without
grouping, we found that all 96 filters converged properly.

8.2. Using Smaller Filters with Deeper Models

We found that our AlexNet-like model with 11x11 first-
layer filters performed better than the same model with 3x3
first-layer filters and two additional convolutional layers.
This result contradicts the intuition that smaller filters with
deeper models exploit more non-linearities and give better
performance. However, it should be noted that the docu-
mented performance gains in Simonyan et al’s paper [9]
was from the use of small filters together with very deep
(16 to 19 layers) architectures and hence may not always be
applicable to much shallower models.

8.3. Using Data Augmentation

We found that data augmentation was crucial for good
performance in this task. The use of data augmentation
helped to reduce logloss by about 0.2 across all the mod-
els we have trained so far. We suspect that more elabo-
rate data augmentation schemes can further reduce logloss.
However, we did not have the time to test this.

9. Conclusions
Given more time and resources (computing power, in

particular), we would like to have experimented with deeper
and bigger models (specifically smaller filters and deeper
architectures a la VGGNet). We would also like to have
experimented with transfer learning outside the context of
this competition (i.e. disregard the competition rules that
prohibit use of external data). However, given the limi-
tations, we found that this Kaggle competition provided a
great framework for practicing the various concepts taught
in this course. In particular, the competition organizers pro-
vided a relatively clean dataset so that we could focus on
applying the concepts learned in the course (and not with
data collection and sanitation). The images also lent them-
selves well to the use of convolutional neural networks, but
were still challenging enough such that we had to be careful
with the architectures and techniques used to combat over-
fitting.

References
[1] Q. Hu, C. Davis Automatic plankton image recogni-

tion with co-occurrence matrices and Support Vector

Machine. Marine Ecology Progress Series, 2015

[2] Q. Hu, C. Davis Accurate automatic quantification of
taxa-specific plankton abundance using dual classifi-
cation with correction. Marine Ecology Progress Se-
ries, 2016

[3] G. Gorsky, M. D. Ohman, M. Picheral, S. Gasparini,
L. Stemmann, J. Romagnan, A. Cawood, S. Pesant, C.
Garca-Comas, F. Prejger, Digital zooplankton image
analysis using the ZooScan integrated system, Journal
of Plankton Research, 2010

[4] C. S. Davis, S. M. Gallager, A. R. Solow, Microag-
gregations of Oceanic Plankton Observed by Towed
Video Microscopy, Science 10 July 1992

[5] Kaggle National Data Science Bowl. [online]
http://www.kaggle.com/c/datasciencebowl/ [accessed
Feb 15, 2015].

[6] Jia, Yangqing and Shelhamer, et al. Caffe: Convolu-
tional Architecture for Fast Feature Embedding. arXiv
preprint arXiv:1408.5093, 2014.

[7] Y. LeCun, L. Bottou, Y. Bengio and P. Haffner,
Gradient-Based Learning Applied to Document
Recognition, Proceedings of the IEEE, November
1998

[8] A. Krizhevsky, I. Sutskever, G. E. Hinton, ImageNet
Classification with Deep Convolutional Neural Net-
works, Advances in Neural Information Processing
Systems (NIPS), 2012

[9] K. Simonyan, A. Zisserman, Very Deep Convolutional
Networks for Large-Scale Image Recognition, arXiv
technical report, 2014

[10] X. Glorot, Y. Bengio, Understanding the difficulty of
training deep feedforward neural networks, Interna-
tional Conference on Artificial Intelligence and Statis-
tics, 2010

6


